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Digital De-modulation: Matched Filters

If you may recollect the subject that we have been talking about before this has been some

gap now was digital  de-modulation right and specifically  we are going to look at  a very

important  component  of  we  in  the  process  of  looking  up  looking  at  a  very  important

component of digital modulators which we call them the matched filters. 

(Refer Slide Time: 01:37)

Just to quickly recapitulate for you, what we have been talking about so far this is just a very

quick review of what we have talked earlier because there has been some gap.



(Refer Slide Time: 01:51)

The job of a de-modulator is to convert the received (signal) noisy waveform into stream of

symbols or bits which were initially transmitted right and to cut the story short of our last

time discussion the way we said this will be done is to pass this noisy signal that you have

through an appropriate filter.

(Refer Slide Time: 02:21) 

Such that it will pass as much of the signal as possible and reject as much of the noise as

possible  and since ultimately  we are only  interested  in  each interval  symbol  interval  the

detection of that symbol whether it is this value or that value we need to sample this output at



a specific time instant and it is a that time instant that we like the signal to noise ratio to be

the largest right.

Other sampling instant and after this is sampled we pass it through a threshold at that specific

time  instant  rather  we  compare  with  the  threshold  and  then  decide  whether  this  value

corresponds  to  a  particular  symbol  value  or  some other  symbol  value  right.  This  is  the

approach that we have to with that we have decided to follow and the crucial component in

all this is this filter G t, right, because it is the job of this filter to produce an output which

frame sample at a specific time instant will contain most of the contribution from the signal

and as smaller contribution is possible from noise right.

So basically that is the important thing we need to look at how to design such a filter and we

therefore went through some little bit of exercise as to what this filter does to the signal and

noise that is coming along right.

(Refer Slide Time: 03:53) 

The specific problem that we have presently decided to work on is the detection of a pulse in

noise, we are not even looking at the complete digital communication problem here right. A

simplified our problem of interest look to that of finding out whether or not a pulse exists in a

given interval of T seconds right, because once we know the answer to this question how to

solve this problem we can extend it through the de-modulation of sequences where you may

have multiple valued sequences (avail) possible of in a given interval.



Example a pulse could have multiple  amplitude levels it  could have different shapes you

know we could take care of all those things but to start with to simplify the discussion the

detection problem you are looking at is a very simple one you have a pulse coming along

with noise but you are not sure lets say whether this pulse exists or not in this interval of T

seconds and you want to detect whether what you are receiving is contains only noise or

contains that pulse and noise in the presence of noise.

So this is a process this is the problem we are looking at. Therefore what we do is we start by

looking at the output of this filter in terms of the input V t, which in the presence of signal

will be consisting of these two components right the signal will be A S t plus N t when pass

through the filter  will  get  an output  which is  a convolution of these two. We have gone

through this derivations before I am just repeating for you to capitulate.

Therefore when the signal is coming along with noise we have really at the output of the filter

contributions both from the signal as well as from the noise right, the contribution of the

signal comes in the form of the average value of the output because the average value of

noise  we have  assumed to  be  zero  right.  So the  average  value  of  output  will  obviously

corresponds to the signal which is deterministic right, because it will be essentially equal to

this component whereas the average value of the noise will be zero right.

So therefore to look at the signal contribution we look at the average value but to see the

effect of noise we have to look at the various of this output around the average value right

because  that  is  uncertainty  associated  with  the  output  value  and  that  will  be  somehow

dependent on the second term the noisy term right. so we will therefore like to look at both

the average value of U t which contains information about the signal and the various around

the average value at the sampling instant which contains information about the how much

noise has managed to pass through the filter right essentially that.

Student: (())(06:48)

Professor: R t is that yes A R T represents the first convolution right, that is, because average

value of U t will be simply the first term right which I am denoting by R T, so R T is the

average value of or expected value of U t fine. 



(Refer Slide Time: 07:23)

Ok and I think if you go through the steps that we went through we finally arrive at  an

expression for R T which was this which is offcourse straight forward which is a basic point

and  then  through  a  little  bit  of  manipulation  and  the  assumption  that  will  take  T0  the

sampling instant to be 0 right just  for a, it  can be really  arbitrarily  chosen, only thing is

depending on how you choose it, you will either get a casual filter or a non-causal filter.

At the moment will not provide too much of our that aspect. So depending on where you

select your T0, you will either land with the casual filter or a non-causal filter but just to

simplify things lets say T0 is equal to 0



(Refer Slide Time: 08:02)

And then essentially your sampling sample value at T 0 equal to 0 is either this or in the

frequency domain by Parseval relation is this. This is a point at which we had stopped last

time. I think go through all this because there was some gap and I thought we should all be

where we were quite nicely so that we can proceed from then onwards. 

Ok so this is an expression for this gives us an idea about the signal contribution to the output

average value at T equal to 0 or T0 equal to 0 sampling instant chosen to be zero right. we

like to now look at what is the corresponding noise contribution in terms of noise variance

because that will help us to setup to write down an expression for the signal to noise ratio will

define the square value as a signal power right the square value of a mean as a signal power

and the variance as the noise power and the signal to noise ratio will be define as a ratio of

these two quantities but larger this ratio the better it will be for our power detection right.

So this is a point at which we have stated. As far as noise power calculation is concerned that

should be extremely simple to appreciate let’s look at this picture again.



(Refer Slide Time: 09:44)

This V t contains signal and noise hence being passed with G t, best way to calculate the

noise variance that the output of any filter is to simply work in the frequency domain right. 

Suppose this has this noise has a power spectrum N f alright, then what will be the power

spectrum of the noise coming out the filter? The input power spectrum multiplied by G f mod

square right and the variance of the output noise will be simply the area under its power

spectral density function right. Whatever the power spectral density function of this noise the

variance of noise which is the total power in noise total average power in noise is nothing but

the area under its power spectral density function right.



(Refer Slide Time: 10:48) 

So the most convenient way of writing down this expression is to go to the frequency domain

and write sigma square directly as equal to first we write down the expression for the output

power spectral density function which will be N f which is a input power spectral density

function multiplied by G f mod square and the area under this density function which is a

integral of this quantity is the output noise variance. So that is very straight forward.

So we now have an expression in the frequency domain for signal power output signal power

at the sampling instant an expression in the frequency domain for the output noise variance or

noise power, we all agree with this? Is there any doubt about any of this computations? We

can therefore set up an expression for the signal to noise ratio by defining this to be the

representative  of  the  signal  as  A times  R0  mod  square  upon  sigma  square  which  then

obviously is a ratio of this two phonetics ok alright and our job is to choose a filter transfer

function G F.

What is the function which is under our control? Or which we want to fix, is the filter right.

So we want to optimize this transfer function G F so as to maximize this. Ideally what we

would like to have is, the filter which will completely eliminate the noise and pass only the

signal but we know that will be impossible, why? Because the signal and noise spectrum

partially overlap with each other isn’t it? The noise spectrum maybe wider but there is some

amount of noise present in the same band as the signal is present right. 



So it will be impossible to eliminate both of them or eliminate noise completely and pass the

signal only right. So at best, the best compromise we can hope to get is maximization of this

quantity  which  will  be  a  useful  thing  to  do  alright.  So  lets  therefore  write  down  this

expression in detail and see what we can do about it. 

(Refer Slide Time: 13:18) 

Or before I do that I think that much is clear has to what this expression will turn out to be.

To do this maximization it is clear what we have to maximize, we have to maximize the ratio

of these two quantities with respect to the function G F right. 

Now this is a slightly different kind of maximization or minimization that you might have

done in your calculus, have you done the calculus of variations? No, you don’t know, you are

not  familiar  with  calculus  of  variations  which  tells  you  how  to  maximize  functions  of

functional, the function of functions right. Because here is a function signal to noise ratio of a

function G F, when you choose a function G F so as to maximize this parameter right. Well

that is a slightly different kind of area in mathematics and since we are not that familiar with

it in your class we will not use that. Will use a different result which is very simple result and

I will not prove it, I will just state that result from math’s.

It is known by the name of Schwarz inequality, are you familiar with Schwarz's Inequality,

ok, so that is no problem there. Where have you used it? In what context did you used it? 

Student: (())(14:41)



Professor: Just as a result by itself, ok so all I need to do is recalculate what that result is for

you and then we will see how that is very useful in obtaining the derivation of our matched

filter right or in doing that maximization that we want to do alright. This results as follows,

suppose we have R t, so let R t and S t be our finite energy pulses right, they maybe complex

signals both R t and S t maybe in general complex. It maybe real valued or complex valued.

Then this result holds take amplitude of R t square integral of this function with respect to T

multiplied by S t mod square D t integral of this, this product is always greater than or equal

to the integral of R conjugate T S t dt, mod square thank you ok.

With equality do remember when are the two sides equal? If and only if well R t is or we say

constant time S t, scaling factor doesn’t matter right. So the two sides will become equal if

that is way. In other words suppose I take the ratio of this upon this, I take this to the right

hand  side  ok  I  will  come  to  that  a  little  later.  So  that  was  the  statement  of  Schwarz's

Inequality  and  will  like  to  now  use  this  to  do  the  maximization  that  you  want  to  do.

Remember this is our starting point, why we are interested setting up the ratio S by N from

these two expressions.

(Refer Slide Time: 17:27) 

Now let write down this expression S by N will be mod A integral GF SF DF square upon NF

times now do you see how to apply it and that is obvious.

Student: data or numerator.



Professor: Some manipulation is required before you can apply it straight away because you

have to identify functions.

Student: (())(18:09)

Professor: Yes that is true, so we can write it as mod A square but will do is will rewrite the

function here let me see the approach is the following will identify this as what? As a product

function Rt St ok and we have to find out we have to then sorry, this is one of the functions

where this is a product function, this is a product (func) we have to take this as a product

function and this as one of the functions and therefore we like to rewrite this in terms of that

product right. With this as the square of another functions, this is square of another functions

right.

So we will write the square root of this into GF, into SF upon right, DF mod of this whole

square and obviously you can write this as root NF GF. Now you can see the connection

between Schwarz's Inequality and what we want to do ok and it is nice if I could have figured

both of them in front but I think only one of them I can assure a time. 

(Refer Slide Time: 20:07) 

So I  have constructed  one of this  functions  this  is  in  the  denominator  and this  is  in  the

numerator right.



So what we are saying is we have the ratio of this upon lets say this, this upon this, this ratio

is going to be less than or equal to a specific quantity which is this right always, at best it can

be equal to this right. So what is the maximum value of this ratio? 

Student: it is equal to the two functions from S and equals

Professor: There are two things, one is at what point is the maximum achieved the other point

is what will be the maximum value, right. The point at which maximum value achieved is,

when this condition is satisfied right and the maximum value is that maximum value of the

ratio  is  well  whatever  it  is  alright.  So  these  are  the  two  things.  First  lets  look  at  the

maximizing point, right, in the maximizing function.

The condition under which this ratio will become the largest which is what we want to do, we

want  to  maximize  this  ratio  right  the  condition  for  that  is  that  let  me write  down.  This

quantity is constant times this quantity right actually not. Some other, see the original result is

R conjugate T St, so the conjugate of this quantity should be equal to a constant times this

quantity right. 

(Refer Slide Time: 21:38) 

In other words GF maximization would be done for Gf equal to Sf S conjugate F upon N f is

a real function, why? Why N F is a real function? 

Student: we have assumed Gaussian Noise.



Professor: No it is the power spectral density function, a power spectral density function has

to be real right. N f depends on noise, power spectral density function any power spectral

density function has to be real positive function right. So that is why infact we can talk about

a square root otherwise we can’t even talk about its square root right. So it will be, what is

this? This is the function G f which will maximize this ratio. How does it come? It comes

from the condition that the conjugate of this or this function should be the some constant

times a conjugate of this.

Student: the denominator is taken only of the product terms. Sir basically times the product of

two integrals that R t square multiplied by

Professor: That is what I have tried to explain to you this basic result, I will take of one of

this here right which is then there is a perfect matching between this and this all we saying

that this ratio is less than or equal to certain quantity which is a constant which depends on S

t, we are talking about the what the value is.

Student: maximum value will be the other functions.

Professor:  Right,  we are  not  looking  at  the  maximum value  here  we are  looking  at  the

condition  under  which  this  maximum will  be  achieved  right,  that  condition  will  be  this

condition  R t  equal  to K S t.  We identified  what  is  R t  and what  is  S t  right.  We have

identified in this what is which corresponds to R t, which corresponds to S t right and then we

are using that fact in arriving at this result, is it clear? 

Student: you put as a quantitative only.

Professor: Yes why? Because this result here says R conjugate T St, right, so one of them has

to be identified as a conjugate function or as a unconjugated function. I have combined that.

Actually root N f at G f is equal to S conjugate F upon root N f and then I have taken root N f

to  another  side  and finally  we get  this  result  ok.  So this  is  expression for  filter  transfer

function which will maximize this signal to noise ratio at a sampling instant T equal to zero,

T0 equal to 0 alright,
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And the maximum value is maximum value of the signal to noise ratio is obtain from the fact

that this is going to be less than or equal to well, now we can do that maximum value we can

obtain by substituting this in this expression.

This transfer function will maximize the signal to noise ratio at the sampling instant T sub 0

equal to 0, the maximum value of the signal to noise ratio can be obtain by substituting this

expression for G f over here in this expression and that we can easily check, will be simply

equal to S f mod square upon N f ok and the interesting result that you will see here is that the

expression for the signal to noise ratio therefore obviously does not depend on G f right.

So maximum value  of  signal  to  noise  ratio  is  it  is  a  maximum possible  value  and it  is

independent of G f offcourse it is been derived from the fact that G f has taken that specific

value, yes please.

Student: (())(26:13)

Professor: Alright, this is it.

Student: in this thus what is special in (())(26:19) 

Professor: This is one of the functions and this is the other function correct the other function

is still on the left hand side right, we are looking at this ratio right. Now we want to find out

under what condition will this ratio be maximum, what the Schwarz's Inequality tells us is,



that  this  numerator  quantity  is  less  than  or  equal  to  this  into  the  other  quantity  right.

Therefore this upon this is less than or equal to the other quantity alright and therefore the,

therefore this is what we need to maximize.

We don’t have to worry about what the other quantity is right and the point that which is

maximum will occur is this point alright, it is on the right hand side not on the left hand side I

said it is on the left hand side ok fine. Now let us look at this equation again, suppose I want

to  change  the  condition  to  I  want  to  eliminate  the  condition  that  T0  equal  to  0,  what

modification in the result you will notice? So our optimum filter is some constant times S

conjugate F upon N f, E to the power minus J 2 Pie f t right.

This will be the additional factor we have to consider, if we want to maximize the signal to

noise ratio at some arbitrary time instant T sub 0 rather than equal to 0 ok. 

(Refer Slide Time: 28:29)

Now let us look at before I do any discussion let me show you the picture that we have in

mind, here is your signal coming along with noise, so noisy signal is coming along we pass it

through this filter which is whether we put the scaling factor there are not it hardly matters

ok, because it will not affect the signal to noise ratio right. The scaling factor will affect the

signal and the noise in the same way, so we not bother about it.

We sample the output of this at whatever sampling instant we need T equal to 0 or T equal to

T sub 0 right and threshold it, that is compare it with the threshold this value and then decide

whether that pulse was indeed present or whether the input signal contains only noise ok. If



the value output value is below a certain threshold value that you have decided earlier then

you can say that the there was no pulse present. If it is above that value that we can say some

level of confidence that it is due to signal right. This output is due to the signal.

Therefore the complete receiver design really speaking not only involves things in this kind

of a match filter but also deciding on a suitable value of threshold because that is going to

affect your performance quite significantly. If you choose for example two high a value of

threshold, what is likely to happen? Sometimes when the signal is indeed present, because of

noise the level may be less and you may wrongly decide that it is absent right.

On the other hand if you choose two lower value a noise pipe might come along then there

will be nothing else but noise and sometime because the noise is sufficiently large because

occasionally  it  can  be  large,  it  can  produce  at  that  sampling  instant  a  value  which  is

sufficiently large to exceed the threshold and thereby causing a false decision that the signal

is present.

When indeed, none is present. So we have the false alarm probabilities on the probability of

missing a pulse and these are kind of dependent on how you choose a threshold.

Student: here we are maximizing signal to noise ratio but we are not maximize the probability

of error.

Professor:  Yeah  the,  you  are  absolutely  right  in  pointing  out  that  fact,  the  ultimate

performance criterion in a digital communication system is not just signal to noise ratio, it is

really probability of error because that is what we finally, but fortunately for most problems

of interest  one can express the probability  of error directly  in terms of this  quantity, this

parameter signal to noise ratio right. So if you maximize this effectively that is equivalent to

minimizing that probability of error. Will see that when we take up digital communication

problems in particular right.

Right now it is a general problem and basically I wanted to introduce to you the concept of a

matched filter which is an essential component in the de-modulator. Now let me just to a very

brief discussion and make you appreciate how this really functions, how this match filter so

called actually this is what is called a whitened matched filter. Strictly speaking this function

is called a Whitened Matched filter right. But I will elaborate on why it is so called, a few

minute later. First of all  how it works? Lets discuss how it works, or how it  tells  how it



maximizes signal to noise ratio or white maximizes signal to noise ratio intuitively we can try

to appreciate that.

Basically  what  you  notice  is  that  the  transfer  function  will  have  large  values  at  those

frequencies  where  the  signal  to  noise  ratio  is  large,  it  will  have  small  values  at  those

frequencies where the signal to noise ratio is poor, input signal to noise ratio is poor right. so

basically what a matched filter is really doing for you or a whiten matched filter really doing

for you is, weighting the input signal in the frequency domain according to signal to noise

ratio’s  present  at  different  frequencies.  Components  which  have  most  contribution  from

signal only are highlighted are given more weightage and components which are more noisy

those frequency components which are basically getting information from noise or which is

basically contain energy from noise are the once which are suppressed ok.

So basically choose a weighting function or a transfer function which depends on the input

signal to noise ratio at different frequencies that is the basic idea and the reason why it is

called a whiten matched filter is simply this, there I can think of this operation as a cascade of

two filters one is this and the other is this. As if I have two transfer functions right in cascade

like that, the if you just think about it if you look at the output here or lets say input contain

only signal only noise, what will be the power spectrum of noise here ? It will be constant

equal to one.

It will become white noise here, right. So whatever noise is present is whitened here and then

offcourse if the signal is also present there also gets modified to some extent and then we pass

it through a filter which is really matched to the signal itself right. So we call it whitened

matched filter and this is just a term it doesn’t really comes from this kind of a interpretation

alright. 



(Refer Slide Time: 34:46)

Let us take a case specific case when your noise to start with is white Gaussian noise, you

already assumed this Gaussian but we are now in making a further additional assumption that

your input noise itself is white right.

What does it mean? That N f to start with this equal to some constant say equal to N0 by 2

alright.  Then what  will  be your optimum filter?  You substitute  that  here it  is  C times S

conjugate F upon N0 by 2 hence is  N0 by 2 is  a constant  you can combine it  with this

constant C, so essentially it is equal to S conjugate F E to the power minus J2 Pie F T0

alright. 



(Refer Slide Time: 35:53)

So in this case the filter that you get is G F I will forget about the constant it is simply equal S

conjugate F and if you are take T equal to 0 again that is in the state right. This is really what

is called a matched filter right. The other one is whitened matched filter it is more general the

whitened matched filter is obviously more general than the matched filter right. Because this

is for a specific case when noise is input noise is white right ok. The next thing I like to do is

write  an expression for the output  signal to noise ratio.  Which is  S by N which will  be

essentially equal to A square by sigma square because we are assuming that your signal is A S

T, let me write down if your signal is A S t such that S t is of unit energy then this is equal to

A square right and noise variance output is sigma square.

Now we have an expression for this already here with us, for the general case this was the

expression you have put N F equal to N0 by 2, then what will I get? What will be simply is A

square sorry, this will be A square by N0 by two right or 2 A square by N 0, I think a better

expression to write is let me denote this we can think of as signal energy in its time interval

suppose signal is of duration T pulse is of duration T, this A square is nothing but E sub P

alright. If provided integral S square is 1, we are assuming that the integral S square t is 1 or

whatever S t may be  finally lets say this energy is E sub t then this is simply 2 E Q by N 0.

Anyway this is expression I wanted to really write and there are some important lessons to be

learned from this expression and from the previous expression for signal to noise ratio. Let us

see what this lessons are, is this ok? 



Student: (())(39:18)

Professor: This is rarely awkward I have computed the signal 

Student: ok in general this not therefore particular, you are not doing a particular case of

white noise

Professor: This is the expression for signal to noise ratio in a general case right at the output,

offcourse I should remove this and say equal to when you are using a match filter right. When

I put when I take the case of white noise N f becomes equal to N 0 by 2 and this is really A

square integral S f mod square which is E p right. So it becomes 2 E p by N 0. So I have two

expressions one the general one and the special one for the case of white noise. Lets look at

the special one first, what you will find here is, that this output signal to noise ratio once you

have used a matched filter does not even depend on the pulse shape.

We appreciate that fact it only depends on how much energy is contain in a pulse right the

specific pulse shape is of absolutely no consequence in the determination of the output signal

to noise ratio whereas that is not the case if your noise is not right you can see that . In this

case the output signal to noise ratio depends on the pulse shape also depends as much on the

power spectrum of noise as on the pulse shape itself.  So the pulse shape itself is of little

importance  in  situations  where  mostly  dealing  with  white  noise  and  that  is  the  general

situation for us in most communication applications right.

Because the noise is sufficiently broadband so as not to worry about the specific pulse shape.

However  we already  seen the  pulse  shape  is  important  for  us  for  other  reasons  like  for

example inter symbol interference right and things like that. In any case it is nice to know that

we don’t have to worry about pulse shape as far as performance against noise is concern as

long as we make sure that  there is  no inter  symbol interference  and as  long as we give

sufficient energy in the pulse to have a good signal to noise ratio. Only parameter that is

really importance is energy contained by the pulse ok. 
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Let me write down an expression for the matched filter in time domain. We start with G f

equal to S conjugate F what should be expression for G t? Can you straightaway tell me.

Student: (())(42:24)

Professor: Or will it be S conjugate minus T? In general if the signal is complex S, this is

what I wanted to check. Now lets ok since there is some confusion lets avoid the talk, some

here  to  here,  from Fourier  transform properties,  then  whatever  the  special  case  you  are

referring yeah but, here considering general (())(43:05) ok but you want me to do it or do you

think it  is ok,  fine.  So  and if  I  want to generalize it  further and make sampling instant

arbitrary rather than  things equal to 0, how will it change?

Suppose I wanted to introduce a non-zero value of (())(43:28) right, here it will be multiplied

with E to the power minus J 2 Pie F t knot the corresponding thing here will be this become S

conjugate T 0 minus T or is it ok? 

Student: minus T 0 minus T 0.

Professor: No-no this corresponds to yeah so minus T plus T 0, which you can write T0

minus T. So that is the most general expression for the matched filter in time domain and that

is in the frequency domain. Let us take a few examples, before taking examples few are the

remarks.
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So first remark if you remember that the for the case of white noise output SNR depends only

on pulse energy right. Second important point is, the nature of the matched filter output, by

considering the output let us say at time instant zero again what this will be? 

Your impulse response is let me write down the general expression first, U t is equal to output

is input or impulse response is S conjugate minus zeta into input V t also V t minus zeta right

D zeta convolution between the input and the impulse response, impulse response we have

seen is S conjugate minus zeta the matched filter impulse response right thus just using this

expression G t is equal to S conjugate minus t alright. At T equal to zero what will happen?

This is the sampling instant suppose we chose this as the sampling instant because that is this

corresponds to sampling instant T0 equal to 0.

This will become S conjugate minus zeta T is equal to 0, so V minus eta D zeta which by

change of sign of the change of variable in the integral here can be simply S conjugate zeta V

zeta D zeta or V t S t S conjugate. What is this quantity? What kind of operation you are

performing? Correlation between the received signal and replica of the transmitted signal

right. (())(47:25) so what does it tell us that the output of the matched filter at this sampling

instant this is a very straight forward expression but the significance is that the value that you

are sampling and based on which you are going to take your decisions can be regarded as

haven in obtained by correlating  your  received signal  with the replica  of  the transmitted

signal right.



So you could as well replace your matched filter for the purpose of the de-modulation by a

co-suitable corolator is it clear? Whose job will be to multiply the received signal with a local

replica of a transmitted signal right and integrate between the with all the duration of this lets

take zero to T or whatever and then sample it at ok, so you can replace the matched filter with

a corolator will talk about this point again. 

(Refer Slide Time: 48:48) 

So this is nothing but the correlation between the received signal and the pulse shape S t. So

basically matched filter helps you to calculate this correlation. Infact if you were to if you

have asked to describe the nature of the that filter output in terms of its waveform, we can

now say something about that. Let’s talk about A R T the mean value of the output, right only

the mean value we are not looking at the noise contribution we are only looking at the signal

contribution. Suppose I had only a signal of shape S t feeding the matched filter output will

be obviously R t, the mean value because there is no noise right. Then that is going to be

equal to we have just seen that alright I made a change of variable ok.

I am rewriting that right, which is nothing but, is this expression familiar to you? S t is auto-

correlation function of S t ok. So is proportional to the ACF of S t, the matched filter output

when the input is only signal the pulse shape to which it is matched right will produce an

output which is nothing but the auto-correlation function of the input waveform and where

are you sampling this auto-correlation waveform at its peak value which corresponds to zero

line right. Basically that is what you are doing the matched filter for the case of situation

where the  input  we have only signal  produces  an output  which is  nothing but  the  auto-



correlation function of the input signal right because the impulse response is matched to the

same (signal) alright. 

(Refer Slide Time: 51:40) 

So finally I will end up this discussion by just discussing a few cases of matched filter, I will,

these all cases are for real signals here the situation where this is your pulse shape, right, lets

say from 0 to T, then matched filter will be alright it depends on where you select your T 0, I

have selected my T0 equal to T. How do you obtain the matched filter in pulse response, you

first you know in the same operation that you do in convolution first reverse the time access

so this will go here right and then shift it by T0 whatever it is.

If I have taken T 0 equal to T, this is what is looks like ok. For a rectangular pulse of this kind

and T0 again equal to T will again get the same rectangular pulse as the impulse response in a

matched filter right. So this is your S t this is your corresponding matched filter offcourse I

am considering here only real examples. Suppose I had taken T0 equal to 0, what would have

happen, what would be the impulse response on the matched filter? Essentially the same in

shape which is a same only thing is it is non-casual that is why it is best to choose T0 equal to

T.

Infcat it is, this is the optimum value in a digital communication environment because every

T seconds you are sending a new pulse right so better therefore choose a sampling instant

equal to or the end of every pulse signaling interval right, this is what is typically done. That

is why a matched filter base de-modulation is really a symbol by symbol de-modulation. You

look at one symbol at a time sample the output at the right instant and infact there is a theory



that we used even when we discussed Nyquist pulse shaping because we assumed that we are

going to look at the output of some filter in this case is nothing but the matched filter every T

second that is why we wanted the output pulse shape to be such that the regularly space zero

cross it every T seconds.

Student: (())(54:04)

Professor: Same thing, no-no-no that will depend on the specific kind of memory signal you

have, will discuss.

Student: ok suppose we have a M different pulse shapes

Professor: If you have M different pulse shapes, yes then ye but not all memory system use M

different pulse shapes ok so you have to be will see all those things. We are only looking at

the basic natural thing showing here but the next thing will be application of this to digital

communication. We are going to look at lets take a third example where I have deliberately

chosen a pulse shape which goes from 0 to infinity right.

Now how do I choose a matched filter? There is problem here you can see that, isn’t it? 

(Refer Slide Time: 55:02) 

Particularly in choosing a value of T sub 0 such that the filter will remain it doesn’t matter I

can always chose any T sub 0 and the proper matched filter will offcourse, suppose I chose T

0 equal to some value T, right, the proper matched filter really is this it is non-casual right. It

extends into the negative time excess and goes on and become zero at T 0 equal to T but



obviously if I want it to make it casual now, there is no way out but to choose a sufficiently

large value of T sub 0 such that what I am ignoring when I do the causality of approximation

is the tail of the impulse response right this tale of the impulse response.

So that it doesn’t have significant energy right. So in this case what I have plotted here is you

can say some kind of an approximating matched filter rather than an exact matched filter

alright. So think this is where we stop today and we will next time see how do we invoke or

use  the  matched  filtering  theory  in  designing  de-modulators  for  different  kinds  of

modulations schemes that we have considered earlier ok thank you.


