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We talk about digital modulation schemes right and we have described the process of digital

modulation as one of mapping a message sequence into a set of, a sequence of waveforms

right this  mapping essentially is carried out so that we can eventually communicate on a

waveform channel right and we have made a review of what kind of constraints are present

on a waveform channel  namely power constraints  and bandwidth constraints  and how to

design waveforms keeping these constraints in mind.

Basically  last  time  we  discussed  the  case  of  binary  modulations  and  binary  baseband

modulations to be more specific and today we will extend out talk on baseband modulations

to consider a case of M-ary situations,  that is M-ary digital  modulations  in the baseband

situation, now M-ary modulations, M-ary baseband modulations or baseband waveforms for

M-ary modulations are what we are going to discuss today.

(Refer Slide Time: 02:18)

And as before we can do this discussion we can carry out this discussion in the context of

either bandwidth constraints channels or in the context of power constraints channels, at the

moment we are going to look at waveforms which, in which there is no bandwidth constraint,

there may be a power constraint but there is no bandwidth constraint and for this kind of



waveform channels primarily as I was telling you last time there are two basic kinds of M-ary

alphabets that we can use right and these are orthogonal and simplex.

Let me first take the case of M-ary orthogonal signal, here we use a set of M waveforms so

we use  a  set  of  this  M is  the  same M symbol  that  we use  for  M-ary  here,  a  set  of  M

waveforms, let us call them S sub m t where small m takes a value let us say between 0 to m

minus 1 okay, having the following properties first they all have the same energy E sub p

right.

They all have the same energy, that is if you are going to compute the energy of each of these

signals this E sub p referring to the fact that this is analogy of the pulse p corresponding to

the waveform S m t which is s sub m square dt more precisely you can write some amplitude

A square and we can take the mod square if you are talking about complex waveforms right,

so A square s m t whole square between 0 to infinity or minus infinity to infinity whatever

you like to use.

(Refer Slide Time: 05:06)

So they have the same energy and secondly they are orthogonal to each other in the same way

that we discussed for the binary case, so the second property that this satisfies that if you take

any two of these waveforms let us say s m t and s n t conjugate, multiply them, integrate, the

result is 0, yes that is important, for m not equal to n, because for m equal to n this will

reduce to the energy integral right, the value of this constant A that you have got here in this

expression, this can be chosen as per our convenience. 



Sometimes we choose A equal to 1, sometimes we can choose A equal to square root of E p

so that this basic signal s m t is having unit energy right so depending on the convenience so

you can choose A to be either 1 or square root of E p, when you choose A equal to 1 that

implies that energy in s m t is equal to E p, when you choose A equal to square root of E p

that means you are considering a normalize version of s m t whose energy itself is unity.

So that is a matter of convenience whatever you like to choose you can choose, what about

the value of m, for convenience of mapping sequences into waveforms and typically we are

going to work with binary sequences right which you are going to map into waveforms, it is

preferred to choose M to be a power of 2, so M is equal to 2 to the power k which permits

convenient mapping alright because we can take a sequence of k bits coming in and decide on

depending on that sequence one of this m waveforms for mapping, for transmission right.

Now although I have talked about orthogonality in this sense, usually and I have taken this

time limits  to  be infinite  usually  each of  this  signals will  be time limited  right  so if  for

example you have a strictly time limited pulses then we can talk of, in fact let us ignore that

fact for a time being but what is more important is we are transmitting this waveforms from

one set of bits to another set of bits, one set of k bits will be mapped onto this waveform then

the next set, then the next set and so on.

There is another condition of orthogonality  which if satisfied with a waveforms is really

helpful at the receiver and that is s m t is not only orthogonal to s n t for m not equal n but

also to s n conjugate t minus l T and now it is for all values of m and n right including m

equal to n that is we would prefer the signals set that you have selected to be orthogonal not

only in this sense but also in this sense where we are looking at the correlation essentially you

can think of this integral as some kind of a correlation between the two waveforms.

The  correlation  between  s  m  t  and  any  translated  signal  from  the  set,  the  amount  of

translation is a multiple of the symbol duration, the waveform duration, l cannot be 0, l not

equal to 0 right, because there is already here that condition is already here for l equal to 0 we

already (())(09:22) now when you put l equal to 0 then m and n have to be different that is

why I have put that condition separately and this condition separately right.

For l equal to 0 we cannot allow m equal to n that is the only difference otherwise yes right

they are the same, so this only says that a signal in the set is orthogonal to every other signal

in the set with and without translation and the amount of translation you are talking about is



symbol duration or the waveform duration right of course it is better to call symbol duration

as long as I am maintaining the limits to be infinity here but it is obvious that if each of this

waveform is itself limited to T seconds then the second condition will be always satisfied

without any problem right.

If not then we have to make sure that (())(10:16) through this integral so is this last point

clear? The third condition that I have talked about here will be always satisfied for a certain

waveforms in which every waveform has a duration of T seconds because the moment you

translate it by a multiple of T seconds there will be no overlap between the original waveform

and  the  translated  waveform  and  therefore  the  product  will  be  0  and  integral  will  be

automatically 0.

Now this is a very useful and important property just like this is at the receiver, remember

this condition is important so as to distinguish between different kinds of signals that you

may like to transmit corresponding to different message signals, this condition is important

again from the point of view of inter-symbol interference and things like that, that is signal

transmitted in one interval does not interfere with that transmitted in the subsequent to right

in some sense.

(Refer Slide Time: 11:25)

And the sense that you are looking here is that of correlation that it has no correlation with

signal transmitted in another symbol direction okay. So the mapping, let me although we have

discussed the mapping sufficiently but just to complete the discussion a mapping that we are



going to do is such that we will take the m th symbol call it m we have m possible symbols,

capital M symbols, 0 to M minus 1, M denotes the m th such symbol.

This  will  be mapped onto the waveform s m t  which in  turn will  be transmitted  onto a

waveform channel right and the way this will be done is that you have bit stream that is

coming in, incoming bit stream because usually most sources will be binary in nature alright

will be broken up into k-bit blocks right so broken up into k bit blocks or as you can call k bit

bytes or k bit words or whatever you like to call them.

And the l th word that is during the l th time interval defines the specific number m sub l right

which implies that you will have to transmit the waveform corresponding to the index m sub l

right, the symbol m sub l which will be s sub m l t and your overall transmitted waveform if

we call that c of t will be the sum of these waveforms from symbol to symbol for all l right

the sum of all these pulses is what you finally transmit of course these pulses are all mutually

displaced with respect to each other by symbol detection.

Student: Sir what is the k-bit block (())(13:38) 

Professor: Remember I defined k a few minutes ago, this k is related by M equal to 2 to the

power k right so you take an input incoming bit stream that is coming along let us say you

select k equal to 3 so you select the symbol value here, here and here, look at this, this will

define a specific symbol by which you are going to denote the sequence right call it m sub l

for  example  in  this  case  you may use a  symbol  0 to  7 right  for  a  3-bit  block and then

depending on what this value is you will choose a specific waveform for transmission and the

final transmitted waveform will be a sum of all this pulses coming one after another right.

And of course this capital  T here will correspond to the direction over which these three

symbols have been accumulated or this k symbols have been accumulated because from 1 set

of k symbols you have to go to the next set of k-symbols right that is a way the mapping will

be done, so instead of each waveform carrying binary information it is carrying information

about a block of bits rather than a single bit.



(Refer Slide Time: 15:19)

That  is  the  essential  difference  between  M-ary  modulations,  modulations  and  binary

modulations right and there are advantages and disadvantages of doing things like that I am

sure you can think of some of those yourself, at the demodulator which we will discuss in

detail  separately but broadly what the demodulator will now have to do because we have

talked about binary demodulators at least very crudely earlier.

Let us very crudely talk about the M-ary demodulators, it will have to somehow produce an

estimate ml hat of ml from the received waveform which maybe noisy so from the received

noisy waveform right, if somehow we produce an estimate which is different from what was

actually transmitted you have committed an error this indicates that you have committed a

mistake that is you are now going to decode your bit sequence wrongly, fine, is the basic

concept of M-ary modulation clear and M-ary orthogonal modulation. Let me illustrate by

means of a diagram.

Student: What is (())(16:40)

Professor:  Okay that  is  something  we will  be  talking  about  in  detail  when we come to

demodulators right, just like in the binary case we have to produce a decision that whether a 1

or a 0 was transmitted here I want to indicate in both the demodulator functionally has to do,

it has to produce functionally an estimate of m sub l right, how it is to be done is something

we will take up when we talk about demodulation in general.
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Now let me give you a few examples of orthogonal waveforms I have taken the value m

equal to 4 for this examples, for illustration, there is a set of 4 waveforms which you may call

S o t, S sub 1 t, S sub 2 t, S sub 3 t, right which you may use for the situation that M equals 4,

so  essentially  you  see  that  over  a  symbol  duration  (())(17:43)  between  0  to  T,  I  have

essentially  a  sine  wave after  different  frequency  going  in  and in  the  same way that  we

discussed the binary FSK you can think of this as a 4-ary FSK case.

All that is needed is that each of this sine waves has a frequency which is integer multiple of

1 by T, 1 by 2T right, now I think at this point I will like to go back to the discussion of the

(())(18:17) last time about orthogonal FSK kind of waveforms some of you has expressed the

doubt that they will be in DC standing on the wave on the transmitted waveform right for the

examples that we have selected it looked as if they will DC on the waveform, DC on the

channel.

Well that was the only an example it was not to be taken that seriously that just showed an

example of orthogonal set of binary waveforms right for example in this case you will see

there is no DC because each waveform is balanced in terms of positive and negative cycles

you could have selected even for those examples the waveforms set like that right so that was

just an example to indicate that those are the kind of waveforms which can be (())(19:03) to

be orthogonal right.

But  if  DC is  a  problem which  you need  to  avoid  you can  choose  this  waveform more

carefully right so that was just to 



Student: (())(19:12) giving us a smaller bandwidth requirement you could have (())(19:15)

Professor: There will be other considerations typically of course here we are talking about

baseband if you are talking about past band you will half a cycle of mismatch in terms of DC

will not make that much difference and actually speaking orthogonal waveforms really are

useful when they are used with large values of m, not with small values of m and when you

are using them with large values of m these considerations become very secondary okay.

(Refer Slide Time: 20:06)

So anyway I thought since that point came up for discussion last time which I could not

satisfactorily address I should have at least point this out to you at this point, so this is one

example  of  orthogonal  signalling,  here is  another  example  of  orthogonal  signalling,  very

simple trivial kind of example so here is your S o t which is the waveform is to be regarded

off duration T upto here it starts here and ends here right.

Again S1 t starts here and ends here right S2 t goes like that right and S3 t goes like that,

sorry this is 0, this is T, so you can see that the waveforms are all continuing a pulse over a

different  portion  of  time  long  overlapping  portions  of  time  and  for  this  reason  you  can

possible call this waveform a 4-ary pulse position modulation right where the position of the

pulse decides the nature of the waveform okay.



(Refer Slide Time: 21:27)

Yet another example of orthogonal set of waveforms is a set of pulses like this right as you

can see if you were to multiply them out and integrate the result they will be, the integral will

turn out to be 0 any pair of them right and this is called 4-ary code shift keying C is standing

for code okay so basically we have a different code for representing each waveform different

binary code right.

(Refer Slide Time: 22:58)

So these examples  are  sufficient  to  show that  one can construct  a  fairly  large  variety  of

orthogonal set of signals right, now you want me to display that for a little longer alright,

please say so if there is any problem of that kind and at any stage okay, one typically uses,



whenever one uses orthogonal set of signals one typically uses very large values of m right,

in fact one can construct larger families of M-ary orthogonal pulses in the same way.

It will not be surprising if you come across this terms which use values as large as m equal to

32 or m equal to 64, okay they have in common use, another point to note is and this point we

discussed also in the context of binary orthogonal signalling loosely speaking motivated by

the fact that FSK is a very important member of this family, this class of signals are called

collectively also loosely known by the name of M-ary FSK.

So generally we may also refer to them as M-ary FSK or M-ary FSK type signals right or

sometimes  simply  refer  to  as  MFSK right,  M-ary  FSK is  briefly  sometimes  denoted  by

MFSK, let us talk about the energy budget here, we may have so many different possible

ways of constructing M-ary signals we can choose different values of m and come up with

the different modulation scheme right, for the same situation.

Now how do I compare all of them when I compare in terms of energy obviously when I

choose a different value of m, the total energy that is being used to transmit that signal is

representing different number of bits right because the moment I change the value of m, the

number of bits corresponding to that also changes, so it is more useful therefore to talk about

not just the total transmitter energy in M-ary case but the transmitted energy per bit, right.

So if  remember each pulse here carries  an energy E sub p, right,  this  energy E sub p is

actually used for a symbol of length k in our binary to M-ary mapping right so it is where k

is, so it is distributed over, this energy is distributed over k-bits where k is equal to log m to

the base 2 so therefore energy per bit, I am sorry, energy per bit will be how much E sub p

upon k or E sub p upon log 2 m.

It is this energy which is important when you are comparing different modulation schemes or

different M-ary modulation schemes for that matter right, so suppose you were to ask, you

were interested in asking question what happens when I go for m is equal to 2 to the power k

to 2 to the power k plus 1 well you look at the performance and look at the corresponding

energy per bit and then you can make a meaningful comparison okay.



(Refer Slide Time: 26:37)

So Eb, E sub b which is energy consumed per bit will be equal to E sub p upon k or E sub p

upon log m to the base 2,  so this  serves  as a  common basis  of reference  let  us  say for

performance comparison of different modulations, different M-ary modulation schemes right

different values of m, so that is one important family of M-ary signals which one can use and

are very commonly used.

Now the next family that I will consider, let us start with a different colour just to put some

variety or simplex signals and the motivation one can derive is from the fact that perhaps you

may feel that orthogonal signals may not be the best class signals from some point of view,

intuitively you may feel like that at least from your binary experience you may feel like that

because in binary experience that you conventionally have is that of On-Off keying verses

polar keying right.

On-Off signalling is an example of orthogonal signalling that you are familiar with, polar

signalling is an example of anti-podal signalling that you are familiar with right and you have

a reasonable appreciation even though we have not gone into detail performance comparison

so far because we have not looked at that, we have not looked at even optimum demodulation

at  the moment,  so we cannot  really  talk about  performance comparison but you have an

intuitive appreciation of a fact that anti-podal signalling gives you better performance than

polar signalling, than On-Off or orthogonal signalling at least for the binary case right.

So useful question to ask therefore in the M-ary context is can we construct generalization of

anti-podal  class  of  signals  which constructed  from the  bind,  is  constructed  in  some way



which have similar properties as that of anti-podal, now what is the essential property that

distinguishes  anti-podal  and  orthogonal  signals  in  the  binary  case  or  in  the  context  of

correlation, right now we are using correlation as a measure of similarity or dissimilarity of

waveforms that we use right, is not it?

In orthogonal case the similarity or dissimilarity is measured by finding out whether or not

the  correlation  various  waveforms  is  0  or  not  right,  in  the  anti-podal  case  what  is  the

similarity or dissimilarity measured, the correlation is negative in fact right, we like to go

from to signal sets which are not only totally have 0 correlation in fact they have less than 0

correlation they have negative correlation right, that is if it is p t then other is minus p t.

And in general, in negative correlation between signals of signal set in M-ary schemes is a

more  desirable  property  than  a  zero  correlation  right  that  is  something  that  will  become

clearer  and  clearer  as  we  go along,  particularly  for  demodulation  because  that  basically

means the various signals in the set have a larger distance in some sense with respect to each

other than in the case of orthogonal signals.

So basically simplex signals are motivated from that kind of consideration okay so let us see,

okay I will define, actually one can construct a family of so called simplex signals from any

given family of orthogonal signals okay so any orthogonal family of M pulses, let us say each

of energy E sub p can be used to construct a simplex family right, the way it is done is as

follows from each signal Sm t in the original orthogonal family, I subtract the average value

of all other pulses, in fact of all the pulses including this, call this let us say qm t, okay.

So from Sm t for any value of M between 0 to capital  M minus 1, I am subtracting the

average value of this signal right, average value of the signal set and generating a new form

which I am calling q sub m t so I get a new set of forms q sub m t where m goes from 0 to

capital M minus 1, right, this signals q m t form the so called simplex family and I think the

special case of binary becomes obvious that will lead to when you choose m equal to 2 it will

lead to anti-podal signals right and it is quite obvious. (())(32:48)

For M equal to 2, for m equal to 2 it will lead to anti-podal signal, for binary case it will lead

to M, is not that obvious 

Student: So (())(33:00) I mean the basic definition of anti-podal like.



Professor: Basic definition of anti-podal is very simple, what was the definition we talked

about for anti-podal signal, minus p t and plus p t that is precisely what you are going to get

in the binary case of course we cannot talk about that concept in the M-ary case is not it? That

is why we have not talked about the different concept which you calling simplex but binary

case becomes a special case of this, alright, is not it.

(Refer Slide Time: 33:34)

Suppose I start with the set 0 and p t which is On-Off set right that will lead to after this

procedure minus p t by 2 and p t by 2 right so that will lead to anti-podal set of signals. So

now let us talk about the properties of the simplex family, first of all if you are to calculate

the energy of each pulse that results that is if you are to do the exercise of calculating the

integral of mod qm t square, right we expected to be the same? No, you are in for a slight

shock, it will not be same.

I will like to do that, it is matter of very simple combination so please do that yourself I am

not going to spend time on doing that it is very simple algebra and what you will find is this 1

minus 1 upon M into E sub p, so the I get energy carried by each set similar in the simplex

family is smaller than the corresponding pulses as you peak orthogonal family from which

the simplex family has been constructed okay.

So that is the first thing that they have less energy than the orthogonal family right, second

important point to notice is that simplex pulses are not orthogonal right so simplex pulses are

not orthogonal in fact they have the more desirable property of negative correlation right, can

I remove this?
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That is a stronger, we can say that they contain a or they have a stronger property, stronger in

the sense that they are more desirable in this kind of applications of negative correlation, for

example if you choose two different values of m, m and m prime let us say and they are not

equal the correlation is given by qm t, q sub m prime t of course prime should come here and

conjugate should come here, integral between minus infinity to infinity will be equal to minus

E sub q upon M or minus, can I write it in terms of E sub p what will it be, okay I think just

leave it like that.

Just check whether this is correct or not I am having a small doubt about it.

Student: We will check it for the binary case.

Professor: For a binary case it is okay because that will give rise to 2 right, Eq by 2, that is

correct, okay in any case please verify this, now why we call it a stronger property is I have

already mentioned, let me put it in the writing over here we later study later this, we will

study this point later but I will just like to mention this property here that we will find that the

simplex set gives the same error probability as the orthogonal set from which it has been

derived right. So what is the advantage? Advantage is it is giving the same performance with

a smaller energy right.

Student: Sir point here is that the energy transmitted might be less but (())(38:30) that we are

constructing it from the orthogonal signal that much energy is being used up.



Professor: What is important is how the energy is used on the channel, how much energy is

actually how much power is (())(38:45) to the channel right the construction is a very trivial

process at the transmitter.

Student: What I am trying to say is some (())(38:55) Sm t minus summation of all this and by

that encoding we are wearing down the energy level but the energy that we are giving to the

system, channel included is still the same (())(39:12)

Professor: Pulse generation mechanism is a local mechanism of your circuit of the transmitter

right even do the whole exercise that will be very low power level but it is again important is

how much energy level finally counted on to the channel right so in fact this construction

mechanism is only artificial in that sense that does not define how much energy that we need

put on the channel, that will be finally decided where the power amplifying is have right

okay.

(Refer Time Slide: 39:53)

Okay the point that I want to mention which I have mentioned you simplex set gives the same

error probability as the orthogonal set with smaller energy so it is more energy efficient right

and something that  is  more energy efficient  is more useful at  least  in a power constraint

channel right that is the meaning of power constraint that when we are short of energy and we

like to make very efficient use of energy that we might have at our disposal like in satellite

communication.

And now this is something that I will just mention to you as an interesting thought and maybe

some of  you can  take  that  off  for  your  personal  research  there  is  a  very  long standing



conjecture although nobody have been so far been able to prove this or disapprove it for that

matter which is a conjecture because it is neither has been proved nor a counter example

found so far.

Of all the M-ary pulse alphabets of given analogy E sub p, there is no other alphabet which

can be smaller probability of (())(41:29) than a simplex set okay, I will mention it, of all the

M-ary pulse alphabet of energy E sub p or E sub Q whatever none has smaller P sub e than

simplex of course you had to specify the conditions on a normal kind of channels we do this

analysis for which is the additive white Gaussian noise channel.

That is when you encounter White Gaussian Noise on a channel then simplex signal set, M-

ary simplex signals that is the best, and you already know that for the binary case right we

have discussed that for a binary case this is a corresponding result for the M-ary case but it is

an interesting point that I made here for that maybe some you can try to prove or disprove it.

(Refer Slide Time: 43:08)

Okay so what we have done so far is the M-ary orthogonal family and the M-ary simplex

family which can be constructed or expressed in terms of the M-ary orthogonal family, now

there is one more family of M-ary signals one can derive from the orthogonal family and

simply call it Bi-orthogonal family and it is very simple you take any set of start with any set

of M by 2 orthogonal pulses.

And we can now construct a set of M so called bi-orthogonal pulses which is simply the M by

2 orthogonal pulses that we started with include those in the set along with this is I am just

saying union with the negative of each of this pulses, okay so for example if you start with S



sub 0 t to S M by 2 minus 1 t right then just add the negative of each of these to the set you

have a family of m signals which are called bi-orthogonal okay.

You can think of a random (())(44:38) space right in which each orthogonal access of the

space, orthogonal basis function of the space is used to represent one and different signal and

then you also taking the signals corresponding to negatives of each of this basis functions

right that is the bi-orthogonal, for example in a signal space representation which will be

taking up separately later.

(Refer Slide Time: 45:05)

Suppose  these  are,  these  represent  two  orthogonal  set,  orthogonal  signals  in  a  binary

orthogonal set for example this (())(45:15) let us say S o t and this represents S 1 t right they

just being used as basis function for abstract space of this kind, then a bi-orthogonal family

would be simply obtained by using this along with this and using this along with this right so

what you will notice is the dimensionality of the space will not increase we will be working

in the same space, M by 2 dimensional space.

But there are number of signals that we are going to use is larger right, now some other points

of  interest  in  the  context  of  M-ary  orthogonal  and  other  M-ary  schemes  that  we  have

discussed so far, we have talked about energy calculations and how we will like to compare

energies whenever required, we initially mentioned that these are signals that can be used

when bandwidth is not a limitation right.



(Refer Slide Time: 46:25)

I will like you to appreciate that fact that is here, let us talk about what happens to bandwidth

as M increases in this class of signals if you look at typical examples that I have given you,

you will get a feel for that right for example look at the 4-ary FSK example that I gave you

and so on, as I increase the value of M you will have to put more and more such signals and it

may appear intuitively that necessarily the bandwidth has to go up right.

Increasing the value of M that is putting, using larger and larger chunks of K-bits to map into

waveforms is necessarily associated with increase in bandwidth so all the M-ary schemes we

have discussed so far have this problem that is bandwidth literally grows with M and there is

no attempt on our part to constraint the bandwidth right, all we are interested in is that the

orthogonality condition must be satisfied or a simplex condition must be satisfied and so on.

We are not even explicitly or consciously try to do anything about the bandwidth right, yes

we will have to see the bandwidth efficiency but the overall bandwidth is going to go up right

for as the value of M is going to increase, we have to still see how bandwidth closes with

respect  to increase  in  number of bits  that  we are simultaneously  carrying out,  no it  will

depend on the kind of signals that we use, we cannot make a very general statement about

that, all you can say is it will grow in some sense.

Student: That is also going to find that you know moreover I mean the bitrate is increasing

with bandwidth.

Professor: But the bitrate is only increasing log 2 (())(48:27) times whereas the bandwidth is

increasing much more than, much faster than that right because you are having instead of M



signals persistently your bandwidth is going to go perhaps at least linearly not more right, so

therefore that increase in number of bits that you are representing with these instead of M

waveforms is not necessarily an off-setting factor as far as bandwidth is concerned okay.

So there is no attempt to constraint bandwidth and increasing M is associated with more

bandwidth therefore the question arises what should we do in bandwidth constraint channels

when we want to go for M-ary schemes? What approach should take? Here we cannot allow

any increase in bandwidth at all no matter what is the value of M okay, now what kind of

approach comes to your mind, we briefly talked about it last time.

We are going to necessarily have to work with band limited pulses right and typically we will

decide on a band limited pulse shape or perhaps a set of band limited pulse shapes if you so

desire, usually it is convenient to zero onto a single pulse shape p t right and then construct

M-ary waveform around that pulse shape and then the options that you have are very few in

number okay.

(Refer Slide Time: 50:35)

You, it is going to be now very difficult to construct orthogonal or simplex other kinds of

families, once you put this bandwidth constraint alright the most commonly used option is in

fact what is called M-ary ASK or M-ary PAM okay, so what a signal space representation of

the same would be a chosen a pulse shape, I think I have figure for that somewhere, you

might have chosen a pulse shape and let us say this line represents that particular pulse shape

this is the basis function and this in one dimensional space which is represented by p t.



So this  point  here  represents  the  signal  p  t  then  in  the  binary  case  we  know what  the

corresponding thing is you can use minus p t, you can construct a 4-level signalling by using

four different amplitudes right or an 8-level signalling by using eight different amplitudes but

the basic pulse shape remains p t only you are using that pulse shape with different amplitude

okay so these are the kind of constellations or signal space diagrams that you work with when

you are working with bandwidth constraint M-ary signalling.

(Refer Slide Time: 51:43)

An example here of a waveform, a 4-ary waveform corresponding to M-ary ASK where just

for the sake of illustration chosen a triangular pulse a four possible different amplitudes right,

this is one amplitude, this is another, a third and a fourth, these are the 4 amplitudes that are

coming up and we have associated with each of these amplitudes a binary sequence of length

2 right so when the two successive bits are 1 1 maybe you transmit this amplitude 0 1 this

amplitude so on okay.

So that is an example of M-ary ASK of course this is not a good example in the sense that this

triangular pulse is not going to get strictly band limited also right typically you are going to

use pulses which satisfy the nyquist criterion alright, namely the sinc pulses and that family, I

think we will stop here and we will next time do consider passband modulation for both

binary as well as M-ary case. They are quite different in philosophy and style okay the most

of the material again will be available in any other books though not in this form.

The book that I am following at the moment will not be easily available to you so it is called

Blahut, Digital Communications by Blahut.



Student: Could you spell it?

Professor: Yes, I could, dekhiye. 


