
Computational Electromagnetics and Applications 

Professor Krish Sankaran 

Indian Institute of Technology Bombay 

Exercise 18 

Method of Moment 

We went to look into simple capacitance problem in this module we are going to use Method 

of moments to solve this problem. So let us look into the problem geometry itself and I will 

explain you how we can later use method of moments to solve this problem. 
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Domain geometry is going to be a parallel plate capacitor and its having the x and y axis in 

such a manner so the top plate is going to be at v by 2 plus volt and the bottom plate is going 

to be minus 1 by 2 volt so the top plate is going to be plus half volt the lower plate is going to 

be at minus half volt. And the distance between the plates is going to be a. The top plate is 

going to have positive charges on it; the bottom is going to have the negative charges minus 

Q. And the width of the plate is going to be given by W. So this is going to be 2D plate 

capacitor problem that we are going to solve using Method of Moments.  

As you know method of moments normally used when the surface phenomena become very 

important for example when these kind of problems it is not the bulk area which is in 

between the two parallel plates that is important whereas the surface phenomena that is the 

surface charges that are going to play an important role. So that is why method of moments 

will be a very very good tool to solve such problems. And not only that here we have got a 

parallel plate. But we do not need to have a parallel plate. We can have plate of orbitary 

shape. So we are going to take any shape and we are going to see release how such a model 

can lead to solution.  
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So let us assume instead of parallel plate we are going to have a plate of orbitary shape. And 

this shape is going to have various elements. So the elements are going to be the ones that we 

are going to mark with x. So when you have such a arbitary shape what we are interested is 

we are going to find the value of the response at a distance from the source. For any charge it 

is going to be on the element you are trying to see the kind of respond that is going to happen 

for this element. So that is going to be given by the response function which is here going to 

be the Greens function. 

So what we will do is we will start with a function D which is a minimal distance from a 

straight line extension to that element. So for example if you are talking about a particular 

element let us say this is the element you are interested in you are going to start talking about 

the distance that is going to be this . So for this particular element you are talking about this 

distance so the distance is the minimal distance from the straight line extending from that 

element. And the second thing is you are trying to find the contribution of this element to the 

potential at that observation point. The observation point is going to be r prime and the point 

where you are looking at will be r. So that is how we are going to see what is the impact of 

that particular charges that are at point r. And you are going to see the impact at the 

observation point at r prime.  
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So this is going to be the integral that we are talking about. So if you have this is as the zeta 

direction. And this is going to be the starting point and the ending point. So eta s is going to 

be the starting point and zeta e is going to be the ending point. So this is the starting and this 

is the ending point for this element. And Lu of square root of x square plus d square dx where 

d is the normal distance what we are talking about for this element.  

And when you are talking about this element you are going to extend this line and you are 

going to take the normal distance so this will become the d when you are talking about this 

element. It is going to change for each and every element but d is at normal distance and this 

is the way we compute the response function. And when you expand this what you get is 

minus Rho s divided by 2 Pi epsilon 0 [i by 2 x Lu (xsquare plus d square) minus x plus d arc 

tan x by d. This is going to be the value and its going to be integrated along the limit zeta s to 

zeta e. So this is going to be the starting point and the ending point of it. 
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So let me write this expression in a much clearer form here. So what we have got is the 

response function is equal to minus Rho s divided by 2Pi Epsilon 0 [1 by 2 x Lu (x square 

plus d square) minus x plus d arc tan (x by d)] under the limit zeta s to zeta e. So this is going 

to be the way we are computing to each of that element. So this is for one element so you 

have to add up all the elements. So we are now going to do this problem using a Matlab 

environment. 
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So we are going to use a Matlab program we have taken this code from the classical book of 

Rylander, Ingelstrom and Bodeson called Computational Electromagnetics and the page 

number is given here.  
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And the code is basically going to help us compute the value of the capacitance using the 

method of moments.  
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And we are going to solve for this problem by giving certain input parameters, the input 

parameters are going to be the separation between the plates the width of the plates and the 

number of elements we are going to choose and certain number of elements on each of the 

plates so on and so forth. 
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And we are going to compute the value of the capacitance, so in order for us to compute the 

capacitance we can write the value as the absolute value that we are interested in. 
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Let us say we have only 1 element. And if you are running the problem. 
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What we get is the value as 16 fared. 

(Refer Slide Time: 08: 18) 

 

And now we are going to increase the number of elements to 2 we are doubling it. 
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And we are seeing what is the value we are still getting 16 
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So we can keep increasing the value let us say we go to 10. 
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We see the value here it is 18 so it is still not converge the value is changing quite a bit. 
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So we can increase the value even double it so we say 20 elements. 
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And we see the value is still within 18.something  
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So we can increase it to 30, run the code; 
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And see the value is increasing but not that much faster. 
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So if we put 50  
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We will see that the value is almost converging very slowly. 
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 And if we increase it to 100. so this is going to be a very very high value  
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And you will see that the value is almost in the range of 18.5 to 18.6. 
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So this is the classical problem and the internal aspects of the problem are basically solving 

the greens function that we have described here and we are going to use the Greens function 

the way we have explained it in the expression we have shown.  
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So if you see the value here is going to be given by this expression and we are taking the 

value ,and we are putting it in the A value which is the internal memory that we are using for 

computing the sigma later on once you go through each of the elements  
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So this loop is basically going through k elements where k is from 1 to the length of (xs) 

itself. 
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And once you compute all the A values so it is going to be the global matrix we are going to 

invert A, so initially what you get is A multiplied by sigma is equal to Phi. 
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Since it is a simple Poisson equation what we get is a matrix equation which is [A] [sigma] is 

equal to the potential which is the Phi that we are trying to solve, and once you solve this 

what you get is the value for sigma and once you get the charged density which is we write it 

as surface charged density because we are interested in the charges that are on the surface of 

the parallel plate capacitor. If one side is Rho s the other side will be minus Rho s because we 

have plus Q and minus Q. And once we know that we compute the value of the charge by 

taking the A inverse on multiplying it with Phi. And once we know that we multiply the value 

of the charge density multiplied by the H which is the length of the element itself. 
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And that will give us the value for the charge. 
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 Once we know the charge we can go and compute the value of the capacitance by using the 

formula c equal to Q by V. 

 And we know the v is the potential difference between the two plates so its going to be plus 

1 by 2 and minus 1 by 2 so the difference is going to be 1. And we can compute the value of c 

by making the value of v equal to 1, so it is going to be C equal to Q itself for this problem. 
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So that is what we are doing using this code and the code itself is self explanatory it has two 

modules one is the input potential function itself where you give the domain and its domain 

definition and once the domain definition is given it calls for a subroutine which is basically a 

function which gives the value of charge and sigma for a given inputs which are here. 
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So I encourage you to take the code and test it for yourself. This is an excellent example from 

the classical book of Rylender, Ingelstrom and Bondeson is given at the bottom of the code 

itself and the page references are given here 
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 so I urge you to simulate such problems from classical text books. So that you can 

understand very much the basics of simulation on one hand and the other hand you can also 

understand how one can model such physical problems in a computational environment like 

Matlab Thank you! 

 


