
Principles of Engineering System Design
Dr. T. Asokan

Department of Engineering Design
Indian Institute of Technology, Madras

Lecture – 08
Originating Requirements: Examples Systems Engineering software – CORE

 Hello friends. Welcome back to one more session on engineering system design. In the

last few classes, we discussed about the first phase of a system development;  that is,

defining the system level design problem. And in this stage, we basically look at the

requirements of the system from the customized point of view as well as from the system

a design point of view, and identify all  these requirements  and prepare a originating

requirements  document;  which  is  the  output  of  the  first  level  of  the  identifying  the

system level design problem.

We discussed about how do we do these how do we get the requirements, and then how

do we document the requirements; what are the procedures to be followed in document

this  requirements.  And  we  shown  one  case  study  example  of  system  level  design

problem we took the example of an elevator, and then explained about the how do we

actually  develop  the  system  level  design  problem  and  then  get  the  originating

requirements document. In order to emphasize the importance of requirements I will go

through one more simple example I am not be going through the complete details. But I

will just explain how do we approach the problem and then develop the requirements

document.



(Refer Slide Time: 01:30)

So,  here we mentioned about  the failure  of  a  air  bag system, one of the classes  we

mentioned  about  this  was  mainly  because  of  the  a  failure  in  identifying  the  actual

requirements of the system. So, we look at this case study and see what are the basic

requirements wrongly identified or why the system failed in identifying the or why the

system developers, failed in identifying the requirements of this particular air bag system

and how it failed.

(Refer Slide Time: 02:03)



If you look at this case, you will see that that safety devices which somewhere in early

90s it became the cause of death for a notable number of individuals, and there were

severe  flows  in  the  design  testing  and  deployment  of  a  deployment  requirements

envisaged during the design.

So,  not  only  the  a  design  requirements,  but  the  testing  requirements  as  well  as  the

deployment  requirements  were wrongly identified,  and that  was the  reason why this

failed in the initial stages of the development of air bag system. So, whatever the basic

requirements which actually failed in this case a listed here. 

(Refer Slide Time: 02:36)

As you can see the requirements defined only a singled safety scenario on which to base

the  design.  So,  the  multiple  scenarios  as  we  discusses  earlier  there  were  multiple

scenarios of operation and a use of the product, but in this case of design only a single

scenario was used. Basically it was designed for a mail driver driving at a speed of 30

kilometer 30 miles per hour, and diving a crash head on crash and that scenario only was

considered while developing the system requirements. So, that was one of the faults in

identification  of  the  design  requirement  where  the  only  singled  safety  scenario  was

considered. And then the second one no requirement that the airbag remain undeployed

during accidents at sufficiently slow speeds that no lives are in danger.

So, this also was not envisaged. So, it was assumed that any case where there is an

accident  the  a  airbag  should  deploy. But  in  most  of  the  cases  when the  speed  was



sufficiently low, there was no need for the air bag deploy, but the since that was not

envisaged and then it  actually  led to failure of the airbag system. Third one the test

condition requirements were wrongly identified. Again the under which the and what are

the  conditions  under  which  the  air  bag  to  be  tested  for  safety  was  again  wrongly

identified again. Here a dummy driver with a wait of around 70 to 80 kg, and sitting in

an applied position, with the hands on a 9-o clock and 3 o clock positions, running at a

speed of 30 miles per hour, having a head on collision were the forces are always straight

on the front of the car.

So, only this scenario was considered for testing. And most of the cases this was not the

condition, because the head on it is not always head on collision there may be forces act

in non-parallel to the vehicle as well as the driver may not be in his applied position, and

the scenario of head on collision when this a driver is in applied position was actually

very  rear.  So,  all  those  conditions  were  not  considered.  And  only  a  one  single  test

condition was a tested, and system pause the test and it was allowed to use in vehicles.

So,  that  was  again  a  failure  because  the  requirements  of  test  were  not  a  properly

identified. Then again pre-impact braking was not taken into account.

So, normally before the accident always brakes will be applied by the a driver, and that

actually reduces the speed of the vehicle. And because of this speed reduction the driver

will  be  always  moving  forward  and  hitting  the  steering  assembly, and that  was  not

actually envisaged in the a test condition. It was always assume that the airbag should

deploy only after there is a collision. So, this pre-braking condition actually required the

airbags to deploy, well  before the accident or the time delay in deploying the airbag

given to be decider  based on this pre-impact  braking. That was not considered when

designing the airbag.

Similarly, injured is due to collision with the airbag was not considered. So, when the air

bag is deployed and the driver is moving forward because of the impact, there was a

possibility for the a driver to get injured because of the airbag. The sufficient elasticity of

the a airbag over the pressure to be maintained, all those things were not considered

when  air  bag  was  developed.  And  another  one  was  the  requirements  of  disposal  of

unused or partially used bags were not identified. Though this was not a reason for a

failure of airbag, this was also not taken into account and actually the deployment or the



disposal  of  the  system was not  taken  consider  into  account  and the  requirement  for

disposal was also not considered.

So, all these actually shows that when we design a system it is important to look at all the

aspects of the system, and then identify the requirements. So, here you can see that the

test conditions, a pre-braking a impact, and then the disposal, all those things were not

given primary importance and that all those actually led to the failure of airbag system.

This shows that the importance of requirement analysis. We will go through one more

example how do we actually do the requirement analysis and prepare the case.

(Refer Slide Time: 07:08)

But in this case, I will leave this case to the as a self-study for you.

So, you can actually look at the causes of apollo 13 disaster as an engineering system

design failure, and find out the faults in the requirements identification that led to the

failure. Again, you can actually see lot of case studies in the of engineering disasters. You

can look at this particular case study and then see what actually went wrong in apollo 13,

what are the especially from the requirement analysis point of view, there may be either

faults also, but look at the requirements and analysis identification of requirements, and

what actually went wrong in the failure of apollo 13.

So,  this  is  actually  you  can  take  it  as  a  self-study,  and  identify  there  a  faults  in

requirement analysis.



(Refer Slide Time: 07:54)

I would like to give you another tutorial, basically you can take this as a tutorial for your

even this course, and try to attempt this problem, and identify all those what are the list at

the here basically, I  am looking at  a  product.  Basically, an ATM machine,  a leading

financial company as decided to develop a multipurpose ATM to deliver cash, accept

cash, pay a bills and print pass book, for the operational phase of this machine. So, it is

only for the operational phase what you need to address in this tutorial. Identify at least

few operational scenarios and explain them in detail.

So, as I told you about how do you identify the operation scenarios in the case studies

and examples, we actually show how to do this. So, for this ATM machine try to identify

a few operational scenarios and explain them in detail. So, we know how to describe an

operational scenario. So, explain them in detail. And develop an input output trace for 2

scenarios.  So,  at  least  for 2 scenarios  you can a  develop an input  output  trace.  And

develop an external system diagram for this or identify all the external systems which

actually  interact  with  the  main  ATM  system,  and  then  prepare  an  external  system

diagram.  And develop  a  set  of  originating  requirements,  and prepare  the  originating

requirement document for the operational phase.

So, you can identify the originating requirements, and as per the format explained earlier

you can prepare the originating requirement document. So, this is the work you need to

do as part of the tutorial. I will be giving you some hints on how to do it, but I suggest



you that you do not go through the next few slides, try to solve this yourself, then you

can check with the slides coming after this, to see whether you are in the you are doing it

the in the right way.

(Refer Slide Time: 09:52)

So, to give you some hints the operational concept scenarios. So, you need to identify the

operational concept scenarios. So, here you can identify many scenarios. For example,

one is the customer making a deposit. So, a customer is coming to the ATM machine, he

wants to deposit some cash.

So, what all the different activities, or different procedures you will be following in order

to  make  the  deposits.  So,  similarly  you  can  identify  other  scenarios  also,  can  have

scenario 2 3 4 5. Or any number of scenarios. So, some examples are 4 scenarios are like

and there is an emergency situation. So, it could be a fire in the ATM room, or there

could be a theft or it can be an electrical short circuit, or whatever it is. So, what will

happen in their emergency situation?

So, what are the requirements to be provided in the ATM machine or the external system

which actually interact with the ATM machine in order to face this emergency situation?

Or there is a fire in the system? Or there is an unauthorized attempt by someone to take

cash  or  to  loot  the  ATM. So,  what  should  be the  scenario?  What  actually  the  ATM

machine should do or what actually the software or the external systems? Or how do they

react to a such a situation? So, that also can be another scenario, or the machine as bog



down. So, what should be the how that scenario to be handled to the machines bog down

how to inform the a central server or the service agents or the customer.

So, what will happened to the customer if it is in between and it breaks down? Or what

will happen if there is a breakdown over the system when the cash transaction is going

on? So, all those scenarios can be identified here. Similarly, there is a theft in the or an

attempt to a theft and then maintenance scenario. So, the machine is under maintenance.

So, what are the system is to shut down? And what are the system it should allow for

service people to access? So, all those scenarios can be a explained in detail and you can

actually identify all the requirements for these operation scenarios.

And to get the input output requirements you can actually go for an input output trace.

(Refer Slide Time: 11:56)

As you can see here, this is a customer scenario one. So, when where you actually the

customer  wants  to  make  some  deposits,  you  can  see  here  there  is  a  customer  this

customer you can see over here.



(Refer Slide Time: 12:10)

So, this is the customer, this is the ATM, and this is the bank computer or the central

server. So, what kind of interactions takes place between these entities? You can see that

customer is an external system over here. And then ATM is the main system of interest

and bank server is again a external system which actually interacts with the ATM.

So, we can see here the customer will provide a general identification to the ATM, and

then these in the form of a card an ATM card or it can be a thumb impression or whatever

form the ATM you would like to have. And then the ATM will ask for a unique id in

terms of a password or form of identification and the customer will provide the id, and

then which is satisfied. If there is a database it will verify it with respect to it is database,

otherwise there will be another line coming from here to the server, which will actually

verify the id and then give a feedback. So, in this case it is assume that the ATM itself

has got the ids or the passwords stored for a particular general id.

So, in that case it will ask for the activity what kind of a transaction you would like to

have, and then the customer selects the deposit activity, and then the request for type a

account type is given by the ATM. Then the account type is provided by the customer,

and the amount is asked how much amount you want to deposit, the transaction amount

is given by the customer. And then deposit type, and the deposit type is given. As in

terms of cash or check or a DD whatever the type of deposit and then there is a physical

means for insert. So, we can see here that the ATM machine provides a physical means



for  insert.  So,  this  kind  of  a  transaction  or  the  input  output  trace  tends  you  the

requirements.

When you say there is a physical means of insert; that means, the machine should have

the facility or there is a requirement for a physical opening in the machine to accept the

cash  or  check,  and  then  the  customer  deposit  the  funds.  And  then  there  should  be

transaction information to the central server. And that will count the amount or verify the

cash. And that will be transaction will be given to the central server. And then the receipt

will be provided by the ATM, and the ATM will go back to it is main menu. And the

customer can choose to have another transaction, or he can leave the place. So, these are

the activities taking place in one of the scenarios.

So, like this we can have all for the input output trace we can have for all most all the

scenarios and provide find out the input output requirements.

(Refer Slide Time: 14:51)

So, this is another input output requirement for another scenario. They basically here is a

withdrawal  activity;  the  customer  wants  to  withdrawal  some  amount.  So,  the  initial

activities  will  be the same. So, once you tell  the request  for a activity  the customer

chooses the withdrawal activity, and then request for account type then account type is

given then request for amount transaction amount, and then once you give the amount.



(Refer Slide Time: 15:19)

Then there will be a verification what is the maximum amount the person can withdraw,

and that amount will be given back to ATM and then ATM will decide whether to give

the cash or not. And once it is accepted that will be providing the cash.

So, the customer is given a cash a given the cash from the ATM. Again, it tells you that

there will be a provision for the ATM to count the currency and then dispose or give the

currency to the customer. And the receipt you provided the transaction details are sent

back to the central server, and the receipt is provided and then it will go backs to main

menu.  So,  these  are  the  different  activities  taking  place  in  during  this  particular

transaction.  Similarly,  all  the  scenarios  we  can  identify  the  input  and  output

requirements,  and  this  requirements  can  be  placed  as  the  in  the  pass  part  of  the

originating requirements.



(Refer Slide Time: 16:13)

So,  you originating  requirements  some of  the  originating  requirements  what  we can

identify  the  system  shall  give  an  indication  of  the  status.  I  mean  the  status  of  the

machine.  So,  what  is  where  it  is  in  operating  condition,  where  it  is  in  maintenance

condition  or  it  is  in  a  breakdown condition.  So,  this  indication  of  the  status  to  be

provided  to  the  customer;  the  system shall  prompt  for  an  identification  and provide

opportunity to provide the identity. So, since the machine has check the identity. So,

there should be a prompt for an identification, and provide an opportunity to prove the

identity. So, these are some of the requirements you can identify.

So, similarly you can have many requirements. These are just examples of some of the

requirements which you can identify using the input output trace.



(Refer Slide Time: 16:55)

So, these actually shows a very top level external system diagram, can you see these are

all  the external system which will be interacting with the ATM system you can have

ATM admin which will be interacting with the ATM system for the maintenance. As well

as a service and other requirements, and the customers from other banks will be coming

and there will be different banks customer like then will be a credit card customers. And

then there will be different networks. Like, there are different international networks like

master visa and that kind of a networks.

So, there will  be interacting with the ATM, then there will  be a unfriendly customer

basically who are trying to either attempt to take money unauthorized of without any

authority. Or  there  will  be  a  some theft  and other  situations.  And there  will  be  bag

management interacting with the system for basically to find out the transactions and to

see whether there is enough cash or other things.

So, there will be hardware maintenance also which actually will be maintaining a system,

and  whenever  there  is  a  problem there  will  be  attending  as  along  with  the  service

providers. So, these are the different systems interacting with the ATM. So, there are the

basically the external systems. And you can actually go further down to this level, and

identify what kind of interaction takes place. So, we discussed about the external system

diagram. So, we can prepare the more detailed external system diagram identifying the

type of interaction taking place between these entities.



(Refer Slide Time: 18:25)

So, that was just to tell you how to attempt the problem of the tutorial problem. And this

will  be  an  assignment  for  you.  You  can  attempt  this  leading  electronics  gadget

manufacturer has decided to develop a multipurpose gadget to store deliver music store

retrieve data like address phone number etcetera. And provide information on location

navigation. And for the operational phase of this device identify at least 10 operational

scenarios and explain them in detail. Develop an input output trace for 3 scenarios and

identify  input  output  requirements.  Develop  the  external  system  diagram  for  these

develop  a  set  of  originating  requirements,  and prepare  the  ORD for  the  operational

phase. And prepare an objective hierarchy for the operational phase also.

So, what are the basic objectives? And what is the hierarchy of these objectives, also can

be prepared. So, this is a group assignment for you can prepare this and you can send it

to me if you want any feedback from this.



(Refer Slide Time: 19:23)

So,  to  summarize  what  were  discussed  in  the  last  few  lectures,  we  started  with  6

functions of system design process; where we started with the first problem of that is the

defining the system level design problems. So, that was the out of the 6 this is the first

one and we attempted the 2 go into the details of this phase. 

So, basically you will discussed about the operational concept, and how do we develop

the operational concept, and then how do we identify the external systems. How do we

look  at  the  originating  requirements,  and  then  the  objectives  hierarchy,  and

documentation and requirements management? And at the end of this level what we are

getting as an output is the originating requirements document, and we saw how do we

actually  prepare  the  ORD,  and  what  is  the  format  for  preparing  the  originating

requirements document. So, with this we complete the first level of design problem that

is the defining the system level design problem. Before going to the next level that is the

functional development of the system, I would like to briefly explained to you about

some of the softwares available for a system design.

So, I will briefly explain these softwares basically it would give you an idea of what

actually the software can do in helping you to design a an engineering system. So, there

are as I mentioned earlier there are multiple software tools for a system engineering, and

some of them are commercially available.  Some of them are mean some of them are

fully available some of them you need to get some license to use. 



(Refer Slide Time: 21:03)

As I mentioned earlier there is one of the software is known as a SysML. It is a general-

purpose modeling language for systems engineering application it is a dialect of UML. It

is a trademark the industry standard for modeling software intensive systems.

So, this is the basically modeling language, a dialect for industry standard. Basically,

used for software intensive a system. they are basically now used in a system engineering

because  lot  of  system  engineering  applications  include  software  and  hardware

integration.  So,  this  is  very  well  used  in  a  system  engineering  applications.  So,  it

supports the specification analysis design, verification and validation of a broad range of

systems  and  systems  of  systems.  This  systems  may  include  hardware  software

information processes personnel and facilities.  So, we can actually use this  a SysML

language  for  analysis  and  design  or  verification  and  validation  of  systems;  which

actually include hardware software information process personnel and facilities.

This is an open source which is publicly available for download, and includes an open

source  license  for  distribution  and  use.  So,  if  you  are  interested  or  if  you  want  to

download it you can actually get it is a free and open source. You can use this one for

your system design applications. And most of the softwares are come with it is own user

manual and explanations on how to use different functions in the software. So, you can

downloading  the  software  most  likely  you  will  be  getting  the  users  manual  and

explanation on how to use it.



(Refer Slide Time: 22:40)

Another one is known as core. It is again a software coming from vitech corporation. I

explained you in one of the classes that IIT Madras has got a arrangement with vitech

corporation.  So,  we  are  actually  part  of  their  university  education  program.  And

therefore, we are actually eligible for downloading the software few of course, especially

the education version. Only thing you need to have some registration with this company.

So, once you register with this company you will be given a password to download, and

a most likely you will have to approach me to get the password because they send the

password to me if you ask for registration. And then you can actually download it and

used for your education application. So, in case you want to download the software you

can  contact  me  and  we  will  make  a  arrangement  for  you  to  get  the  password  for

downloading the software. So, this software is known as core basically looking at the

different  aspects  of system level  design problem,  and then how this  problem can be

simplified using the software.



(Refer Slide Time: 23:48)

I will give you a brief explanation about the software, what it can do and what are the

capabilities or what actually makes it interesting to use the software for a system level

design problem. As you can see system engineers desktop, there are lot of things in the

desktop of a system engineer. So, he has got the source document from where he will

actually extract the requirements, and then based on this requirement it will be finding

out the function list, and then the physical components. And for the physical components

you need to have a traceability, and the traceability will go back to function and then

from the function it will go to the requirements. And similarly, there are different data

items and there are interface definition when you have physical component we will be lot

of interfaces between components.

So, you need to define this interfaces that again coming from the function and the data

items. Similarly, there will be a lot of graphical output coming from the function list in

terms of different way of modeling the a behavior of the system, and this actually all this

need to be recorded as printout reports or models or specifications. So, again the note

book engineering note book data what there will be whatever you stable on different

design activities or a concept development. So, all these things are need to be finally,

printed as a reports. So, as you can see there are lot of interaction between all  these

functions and any change will affects something else on the system.



So, how do we have a properly ordered and a systematic way of representing all these

thing in a using the capabilities of computation and information technology? How do we

actually develop this a particular over a an application? Or we can have all these things

in  a  very  order  and  systematic  way, without  much  complexity  you  can  make  easy

changes you can have proper traceability. So, how do we do this is the is a major task for

a system engineer?

(Refer Slide Time: 25:41)

So, if you look at the a common system engineering tool suite architecture. A normally

there will be a database for the requirements. This will be in terms of it will be a written

it has a word processors or using spreadsheets.

So,  all  the  requirements  database  will  be  developed.  And  there  will  be  a  behavior

database in terms of the functions and functional interactions and the interfaces.  And

then you will be having physical architecture database, the components subassemblies

and how they actually satisfy the functions. And then there will be a verification and

validation database.  So, there will  be multiple  databases,  and using this  database the

requirements will be managed using the requirement database. And the behavior analysis

will be carried out using the behavior database, and architecture synthesis will be done

using the physical architecture, and verification done will be using verification database.

So,  as  we  can  see  here  different  source  for  these  databases  will  be  from behavior

database will be from drawing packages, spreadsheets, simulation packages and drawing



packages  spreadsheets  over  here  for  physical  architecture,  testing  packages  and

spreadsheets for verification database. So, here you can see multiple products utilizing

independent databases; which forces extraordinary data management and complicates the

original system engineering effort. So, here you can see there are multiple databases, and

using this multiple databases become makes the data management a very difficult task.

So,  here  is  the  importance  of  having a  good software  to  help  you to  manage  these

databases, and there actually the software helps you to provide a common database.

(Refer Slide Time: 27:17)

So, that is the preferred system engineering architecture.  Where you have a common

database where it is properly arranged with proper traceability, and all those management

requirements management behavior analysis, architecture synthesis and verification, they

are actually coming from this database. And there will be only one input to this database

that  is  a  source  material,  and  the  output  will  be  the  design  specification.  So,  this

interaction they all the other interactions will be through the database. And therefore, this

common  database  helps  to  have  a  proper  control  of  the  data  and data  management

becomes very easy in this case.

So,  in  integrated  consistent  analysis,  which  actually  gives  a  complete  specifications,

project documentation, queries and models everything will be directly coming from the

database, or this a common database. So, that is the important or that is the preferred

architecture where you provide a common database and from this database you have all



the other analysis, and once you an any changes to one of this data will actually can be a

captured by all these systems or all these sub functions, and any changes can be easily

located or it can be traced without any difficulty, because there is a only one a data

source and this data source can be easily managed. So, that is the idea of having this

particular software.

(Refer Slide Time: 28:37)

So, we can see that in this database, there will be a many interactions apart from the a

functions,  there  will  be  interaction  with  program  management,  the  configuration

management  publications  then  training  personnel,  then  environmental  interactions

operations,  maintenance,  logistics,  test,  security,  manufacturability,  reliability,  a

availability and maintainability of the systems safety, software, hardware and engineers

and the customers. So, all of them will be interacting with this database or directly or

indirectly they will be interacting. And the system engineer or architect will be at the top

level looking at the database and providing necessary update as well as a interaction with

the other agencies.

So,  all  these  people  will  be  always  looking  at  a  single  database  instead  of  having

multiple databases, a single database will be therefore, everyone to access or everyone to

have the others to have controlled access so that there will not be a any ambiguity about

the changes made in the system, or any variations in the design. Because all the a system

all the subsystems or the development teams will be using the same database. Therefore,



it is very easy to manage. So, there will be a better integration or better interaction with

the different teams for maintaining uniformity in the development process.

So,  it  facilitate  domain  expert  collaboration  by leveraging  a  common repository. So,

there  are  different  domain  experts.  They  will  be  always  having  the  same  design

repository and a confusion or the problems created because of multiple databases and

multiple changes can be easily be avoided using this kind of a common repository for

design engineers.

(Refer Slide Time: 30:22)

So,  the  particular  software  core  actually  looks  at  these  from  the  4  sub  functions;

basically, the source requirements domain, behavior domain, architecture domain and v

and v that is verification and validation domain.

So,  all  these  domains  will  be  using  the  same  database,  and  independently  you  can

develop these requirements a using the database, and based on the requirements domain

you can develop the behavior domain; where you can always trace to the behavior the

originating requirements trace to behavior and from behavior you can actually go to the

architecture design. So, behavior is basically looking at the functions, and then functional

decompositions.  So,  you  look  at  from  this  behavior  domain  you  can  develop  the

architecture domain how the behavior is allocated to different physical components can

be  identified.  And  then  you  can  have  the  verification  and  validation  using  the

architecture developed for the system.



So,  here  you  can  see  that  there  is  an  originating  requirements,  trace  to  physical

components. So, you can look at the requirements and then how these requirements are

mapped using the physical components. Similarly, you can have this traceability between

the  requirements  and  the  behavior  and  the  architecture  and  the  architecture  and the

verification and validation requirements. So, all these function will be always using a

common database and using this common database all these will be developed, and any

changes in one of these will be automatically reflected into the core database and the

database will be accessed by the other domains like behavior or architecture in order to

make the necessary changes.

So,  utilizing  a  layered approach to progressively clarify  and elaborate  all  4  domains

concurrently  to  ensure consistency and completeness.  So,  there  are  4 layers  and this

layered approach to progressively clarify and elaborate  all  the domains  (Refer  Time:

32:14)  even concurrently  and ensure consistency. So,  that  is  the  advantage  of  doing

these. Let us see how these domains are developed using the database. And there are

software tools available,  which can actually  help you to develop these domains very

easily without much difficulty in identifying the a sources as well as the a traceability of

those requirements.

(Refer Slide Time: 32:35)

So, let us look at the source requirements domain. Basically, we will be looking at the

requirements. 



(Refer Slide Time: 32:42)

So, while developing the requirements the software allows you to extract requirements

directly from the source documents, the documents could be an excel sheet or a word

processor using a word processing tool. So, any of these tools can be used to extract the

requirement. So, these tools can be used to extract the requirements, and this requirement

will be put into the database of the software, and support you requirements excitation

process directly in core.

So,  you  can  use  the  software,  and  directly  get  the  requirements  from  these  input

documents and then managing the requirements using multiple views.



(Refer Slide Time: 33:18)

So, you can have multiple view of the requirements. You can have a singular view over a

particular  a  requirement,  you  can  identify  you  can  look  the  actual  requirement  the

description of the requirement.  And then whatever  the targets the components  which

actually provide this one from where the requirement came what is the traceability of the

requirement. So, all those thing can be identified from this singular representation. Or

you  can  have  a  graphical  representation  which  only  tell  you  the  hierarchy  of  the

requirements.

So, what is the main requirement, and then a how does the sub requirements come, and

then how can actually we divide this requirements into another sub class. So, all these

hierarchical requirement also can be shown in the a software. Or you can have a tabular

format for the requirements. So, for the different requirements, you can tabulate it. And

then look at the details of these requirements if you want to go into the details of the

requirement  you  can  actually  click  on  to  this  requirement,  then  it  will  come into  a

singular format. So, this is possible with the software, because it actually allows you to

save the requirements in different formats singular graphical or tabular and that actually

helps you to have a proper control of the requirements.



(Refer Slide Time: 34:35)

So, here actually you can see that there are different options available using this option

you can see the requirements, and then it is traceability can also be looked at. So, if you

want to know more about this  particular  requirement,  you can actually  go on to that

requirement  then  see  from  where  this  requirement  came  what  was  the  original

requirement and then how this was modified. So, all the details of the requirements can

be easily obtained using this format. So, it access textual and graphical views of system

elements by clicking tabs in the project  explorer or selecting the desired view in the

toolbar.

So, you can use the desired toolbar and then I mean you click on the desired toolbar and

get the desired view of the requirement hierarchy.



(Refer Slide Time: 35:18)

Again, you can traceability is basically you can look at the requirement hierarchy, and

there is a more to this particular requirement there will be a some integration. A black

boxes indicate nodes that can be expanded to view further traceability. So, if you want to

know more about this command capability requirement, can click on to this and it will go

it is sub phase, and it will tell you all the other requirements it can be identified.

So,  the  traceability  hierarchies  are  automatically  generated  by  core  based  upon  the

system definition data in the repository. So, this always will be automatically generated.

So, you do not need to really prepare all these things. Once you give a link to the in the

while preparing the repository, if you link all these requirements automatically this the

traceability will be generated. So, it is easy to go into the details of that requirement then

find out the origin of that particular requirement.



(Refer Slide Time: 36:15)

And the next one is  the behavior domain.  Behavior domain is  basically  how do you

convert these requirements to the functional blocks, or the decomposition of this into sub

functions. So, this can actually be done in different ways, there are multiple ways of

modeling the behavior of the system and some of the methods are like you can have a

hierarchy of the functions. 

(Refer Slide Time: 36:36)

You can have the top-level function, and then subdivide this into all sub functions or

again divide into it is sub functions.



So, this actually will give you a functional hierarchy of the system. Or you can actually

have a property sheet for each function you can discover the details. And then find out

the from where this particular function came what was the requirement on which the

function was developed. Or there are other methods called n 2 diagrams. We will learn

about this n 2 diagrams, similarly functional block diagram or IDEF 0 diagram. These

are all different methods of representing the behavior of the system, or the requirement

of  a  function.  We will  discuss  about  this  in  the  coming  lectures,  but  you  can  just

understand that the software can be used to develop or represent the functions in different

ways.

So, depending on the convenients of the user, you can either access the IDEF 0 diagram,

or the n 2 diagram or the a functional block diagram, and then look at the functions and it

traceability and the interaction between different function.

(Refer Slide Time: 37:46)

For example, if you look at the functional block diagram FFBD, you can see that there

are functions like a and or iterations and exit. So, these all tell you what actually happens

about this particular function, what is which are the functions to be executed parallelly or

together or which are the function to be a at serially using and or blocks or which are

need to be iterated for a multiple times. So, all those things can be easily represented

using this diagram.



So, core actually provides you the facility to model the behavior of the system in this

format using FFBD.

(Refer Slide Time: 38:27)

Developing the physical architecture. So, after the behavior domain, once you identify

the  function,  you  need  to  go  for  the  architecture  domain;  that  is,  converting  these

functions into blocks or the physical components. So, these again need to be trace to the

functions as well as to the requirements. So, you can see that you can develop using the

behavior domain.

(Refer Slide Time: 38:53)



From  the  behavior  domain,  you  can  develop  for  the  architecture  domain.  Again,

architecture domain you can have a physical hierarchy.

So, depending on the components, we can have the physical architecture hierarchy of

components, the main assembly and then sub-assemblies and then components to this

way a physical hierarchy can be developed. Or you can have the physical block diagram

with it is own interaction with the different blocks. This actually shows that this blocks

are  a  connected  to  or  this  particular  system  is  connected  to  this  blocks  emergency

resources. And the multiple views highlight different aspects of the physical architecture.

So, you can have multiple views. So, this is one aspect of the physical hierarchy, and this

is another aspect of the block diagram.

(Refer Slide Time: 39:33)

And then the interfaces also can be identified using the physical hierarchy. Because we

will be having different components and subsystems and they knew to interact with each

other. And this interaction interfaces through which the systems interact can be easily

identified and represented using interfacing systems. That is actually show you the core

maintains the integrity of the interface definitions throughout the system. So, whatever

the interface you define. So, that can be actually be the integrity of it can be maintained

throughout  the system development  process  and then displaying defined and implied

connections.



(Refer Slide Time: 40:04)

So, different connection can be defined using the physical hierarchy. So, you can see that

there are different methods of representing the connections. An open circle indicates that

the link connects through the top-level system to a sub system. So, this is the top-level

system. So, it connects to a subsystem through a link. So, this is the open circle similarly,

there are different ways of representing the connections. So, all those things can be easily

represented using this physical architecture in the core.

(Refer Slide Time: 40:37)

The other one is the last one is the validation and verification.



We have this behavior domain and then architecture domain. As we have the component

then we need to validate and verify the components, whatever is selected for providing

this  function.  Again,  this  has  to  be verified  by the system requirements.  That  is  the

interaction  shown here.  Again,  here you can  see that,  the function  requirements,  the

documentation, the organization, components, test configuration and test procedures, all

these are linked to the verification event and a verification requirement.

(Refer Slide Time: 40:57)

So,  we  have  the  verification  events.  So,  how  do  we  verify?  And  what  are  the

requirements  needed  to  do  that  particular  verification?  That  again  comes  to  the

verification function requirement. And all these things need to be documented using the

verification documents. So, these also can be easily incorporated in the software. Once

we have the components we can during the development of the components you can

have a  verification  procedure  for  this  one.  So,  automatically  this  will  be link  to  the

verification  document,  and this  system will  provide  you a verification  chart  for  that

particular subcomponent or the subsystem.



(Refer Slide Time: 41:47)

And  once  you  have  this  all  these  you  can  actually  have  a  formal  and  informal

documentation. So, if you are not able to read all this data this actually comes from the

software.  Basically,  it  tells  you that  you can  have  different  kinds  of  formats  of  the

document for the system. So, it provides a broad set of formal specifications, engineering

documents, and other work products to support the project life cycle. So, you can have

document  for  the  functional  requirement,  or  you  can  have  the  document  for  the

verification requirements, or you can have a document for the originating requirements

document.

So,  all  those  documents  can  be  easily  generated  from  the  software  without  much

difficulty you do not need to go back and forth to find out the traceability and from

where the requirement came or from where the document can be traced. So, you can

easily  develop  these  documents  using  the  software.  The  software  provides  you  the

features to develop documents, and are with the a broad set of formal specifications and

engineering documents. So, these are the advantages of using a software for development

of engineering system.



(Refer Slide Time: 42:53)

And using web based reports to the complement formal documents, if you want a web

based reports. So, if you want to categorize the reports and keep it as a document for a

further  analysis,  then that  also can be done you can have different  categories  of  the

document. And then a probably specific items or a complete project database to support

the enterprise team. So, if any enterprise team ask for a particular document you can

easily generate it on the web, and then can be transferred to that particular team. So, that

they can be go through the document and then identify what is the present status of the a

requirements identified or the changes made in the configuration. All those things can be

easily carried out using the software, the advantages of using the software, whether it is a

core or SysML or any other software, you can always used as a force multiplier.



(Refer Slide Time: 43:37)

So, more can be done with fewer resources, via automated documentation, automated

input passing documentation templates effort to produce customer reports, and structure

and methodology which reduces dependency on experts. So, once you have all these data

you can even non-expert can actually use it very easily and get the reports. And timely

ness that is response to stakeholder inquiries or very easily you can get the reports and

you can respond to the inquiries on the stakeholders.

Quality the information value is enhanced through automated consistency checking and

change controls. So, these are all automatically they are all part of the software. So, you

can have a consistency checking and change control always. So, whenever you make a

change you ensure that this change is reflected in all the related components and systems.

And  the  effectiveness  engineers  gain  better  insight  through  models  and  simulation

information  relationships.  And  the  defendable  results  answers  are  objective  not

subjective. So, you can always answer to the queries based on the data available. So, it is

always objective results. And the answers are accurate who did what and when they did

and  what  changes  made  and  who  made  all  those  details  are  easily  available  in  the

software. So, it can actually trace the changes and modifications easily and find out the

requires.

So, it basically it gives you an information superiority in the development of the system.



(Refer Slide Time: 45:13)

To summarize a we have a different software for doing help development of engineering

system. So, the information technology enable to system design procedures, increase the

efficiency of design process, commercial software are easily available for system design

or they are available you can actually either a get it from the open source or you can

actually get for go for commercial softwares. And it can be used for system development.

And core SysML etcetera are some of the standard softwares available for this purpose.

So, with this we conclude this session on requirement analysis as well as the softwares

for  the  system  development.  And  the  next  class  onwards  we  will  start  functional

decomposition or behavior modeling of the system. And then we will go to the physical

architecture development then verification and validation. 

So, till we meet good bye.


