
Principles of Engineering System Design
Dr. T. Asokan

Department of Engineering Design
Indian Institute of Technology, Madras

Lecture – 16
Interface Architecture Development

Dear friends, welcome back to another session on systems engineering. So, in this lecture

we will focus on the interface a design of engineering systems. As you know every

system has got many sub systems and sub systems components and then this CIs or the

configuration items, so this the system need to interact with the external systems as well

as within the system we need to have interaction between subsystems and components

and configuration items.

So, these interactions are taking place through the interfaces. So, we can have various

interfaces with in the system. You can have a mechanically interface, you can have an

electrical interface or you can have a communication interface. So, all these interfaces

need to be provided in such a with that we get proper communication we get have an

integral communication the integrity of the message is not lost or there is proper passing

of messages between the systems and there is proper priority for systems to interact with

other systems and communicate messages. So, all these things are basically design using

the interfaces. So, interface design becomes one of them most important aspect of

engineering system were we ensure that the communication between various systems are

proper and they do not lead to failures within the system.

If you look at the history of engineering systems you can see there are many failures of

engineering system because of communication failure or the interface failure within the

system. We will see one example like that to show the important of interface design and

then we discuss about the various kind of the interface to be provider, but are the

different properties for this interfaces and what are the different standards to be used for

interface design.

(Refer Slide Time: 02:14)

So, as I mentioned earlier this is the fifth step in the engineering system design where we

discussed about the first four stages basically the system level design problem, system

function architecture, physical architecture and the operation architecture. So, we

completed all these four and the next one is the interface architecture development.

So, as I mentioned earlier will take a case study from the history of engineering system

failures and then see how important is the interfaces in the success of an engineering

system.

(Refer Slide Time: 02:48)

This case studies from the a path finder which was deployed to the surface of a Mars for

landing on 4th July 1997 it was a great success in many ways.

So, all there was to the tremendous success from this particular project, but there was an

issue when it was initially launched and then it was being used it was found that the total

system resets were taking place once in a while. That is few days into the machine

operators on the ground realized that there is a total system reset taking place within the

system without any particular reason or without them able to identify what actually was

reason for this and then an analysis was scared out. And then it was found that there was

a shared memory interface which was used as the system interface between various

subsystems. So, there are many subsystems with in the path finder and there was in

architecture called shared memory interface was used for interfacing this subsystems.

And there was a mutex or mutual exclusion lock were employed to give an activity

access to the interface.

So, whenever a particular subsystems wants to access these particular interface they need

to use a mutex, the mutually exclusion locks and that is to be activated note to get the

access to a communication interface.

(Refer Slide Time: 04:11)

So, this was one of the problem was actually lying in this interface. So, there were many

subsystem in the path finder and one of the system was meteorological data or it is

actually collection of data from various sensors and passing it to the main system. So,

there this data was. So, voluminous that the activity had to obtain and release mutexes

several times before it was finished.

So, it was a very voluminous data and there was the time duration for transferring of this

data was very a long therefore, this particular subsystem had to release the mutex many

times because of the long the voluminous data and then before completing a particular

transactions. And at the same time there was another process the long running medium

priority communication activity. So, this was a medium priority activity the

communication activity would in frequently interrupt the metrological activity during its

pause and gain control of the interface.

So, this was what does happening. So, the metrological data was being a transferred at

the same time the communication interface, the communication activity will interrupt

this particular transmission and then take control of the communication interface and

then start transferring data. So, these two are actually creating the problem in the

communication. So, duration of these two task were sufficiently long to invoke a

watchdog timer that was employed to ensure that the high priority bus management task

was executing appropriately.

So, there was a bus management task which had got a high priority and particular task of

this system is to ensure that everything is functioning properly and whenever there is a

problem it will try to eliminate that error or to try to recover from that error. So, the

sufficiently long these two tasks basically the meteorological data as well as the

communication interface they were actually too long and often the watchdog timer will

find that something is wrong with the system because it was not able to access the

communication interface it was not able to get the a required data to ensure the a health

of the system. So, at this time when the high priority bus management task was executing

to check this particular task was a executing or not, it was often found that there was

some problem or this particular system was identifying that there is an issue and it was

trying to reboot the system.

So, in such rare cases the watch dog timer initiated a total system reset to prevent any

further damage to the system. So, when this two particular sub systems were trying to

communicate and then trying to get control of the mutex the priority bus management

task was not able execute properly and that actually of resultant into a kind of a problem

or kind of a error with identified by the system the health check. And that actually was

leading to a total a system reset to ensure that or assuming that there is an error in the

system and it was trying to ensure that it is not go leading to major errors. So, it will go

for a total system reset. So, this was what was happening in the system.

So, there were many subsystems it was interacting and there was some kind of a health

monitoring as well as the error identification of error and eliminating the error. So, these

system were actually conflicting and then trying to take control of the system or the

communication system at that time total reset were taking place.

(Refer Slide Time: 07:29)

So, the jet propulsion lab engineers ran a pathfinder replica on earth till they reached the

reset situation. So, you know to find out what actually is happening in the system the

engineers ran a replica on earth till they reach the reset situation then identify the

problem that there is a problem with the priorities of each tasks or some task need to be

prioritized so that the priority task will always get the mutex and then that will not lead

to a error situation.

So, there it was one that the interface software which was used for the interface had been

programmed without a feature called priority inheritance. So, this particular feature of

priority inheritance which actually a give some particular priority and that inherit that

priority for different subsystems that was not there and the engineers uploaded a short C

program and pathfinder did not experience any more system pieces. The solution was

very simple, but identification of the problem and then solving it was the difficult task

because they had to run the replica on earth and then find out what led to the problem

and then they solved the problem.

(Refer Slide Time: 08:34)

So, this actually shows that interfaces are very important in engineering systems in even

a minor error can actually lead to a total reset or the failure of the complete system and

therefore, it is necessary for the system designers to look at the interfaces in detail and

have a formal procedure to design the interfaces and ensure that interfaces function

properly and it actually provides the necessary communication between different some

systems.

So, let us look at how we actually define the interfaces and how do you actually look at

the various aspects of the design of interfaces. As you know interfaces are common

failure points in the system, so most of the possibility of failure actually comes from the

interfaces, which is defined as a connection resource for hooking to another systems

interface. So, the interface is basically a resource for hooking to another systems

interface or subsystems interface when it is an external system then it is another systems

interface or for hooking one systems component to another that is an internal interface.

So, you can have an internal interface or an external interface. An external interface is

basically used for a system to hook onto another system; an internal interface is used for

hooking to the same systems components for the configuration items.

Important aspects of interface design are basically looking at these interfaces identifying

the important interfaces in the system you look at the external interfaces required and

internal interfaces required. For example, even you consider the elevator or any other

system you can actually identify many interfaces one may be with external system. So,

the elevator need to interact with the passengers is an external system and that actually

we need to have different kinds of interfaces, the communication interface in terms of

data input and some other kind of interface with the maintenance people or interface with

the emergency services. So, all these kinds of interfaces need to be identified in advance.

So, that is the first task, identify all the interfaces external. Then internal interface also,

in internal interface can be identified using the functional structure or the physical

architecture of the system. When we do a and head of zero method of functional

decomposition and then identifying all the functions this actually will give us different

inputs and outputs from different sub functions and the that will tell us what kind of

interfaces are needed between these sub functions.

So, when we convert that into in a physical architecture then we will know that these

components which actually provide the functions need the particular kind of interface in

terms of digital data going digital data interface or analog data interface or some kind of

a mechanical interface. So, this is the first step in identifying or designing the system

interface or interface design of systems.

And once we identify the interfaces the next task is basically to allocate the inputs and

outputs for the interfaces. So, every interface like every system design task will try to

identify the inputs and outputs for the system. So, what kind of input is coming to the

system whether it is a digital data input or analog input or what kind of data structure is

there for that particular input, what is the size of the input, what kind of transmission

speed is needed.

So, all these things need to be identified in the inputs and outputs for the interface and

then we derive the interface requirement interface requirements in terms of the system

should be able to transmit the digital output from one point to another point or it has to

accept the digital requests from passenger or digital data to be requested the system

should be able to receive the digitized information from one particular system. So, that

kind of interface requirement can be developed after identifying the interfaces.

And then exploring the alternative interface architecture, so there can be many

architectures for interface. So, we need to look at what kind of an architecture will be the

best for this particular system. So, we will discuss about various architectures for the

interfaces, so from these architectures we need to choose a most suitable interface. So,

when we discuss about interface design we will actually look at only and other

communication interfaces the mechanical interface and other physical interfaces needed

within the system will not be discussed here because those are mainly coming from the

physical architecture.

So, whenever we identify the particular configuration for the interface or the alternate

interface architectures we basically look at the alternatives and then the physical system

design of that will be a separate task. So, we do not discuss about the physical interfaces

we will be looking more on the communication interfaces to be provided for the system.

(Refer Slide Time: 13:51)

So, the main requirements for an interface is the important performance requirements are

basically in terms of performance there are throughput and response time are two

important parameters in terms of for interfaces. So, what is the data I can transmit and

what is the response time for this transmission, these are the two parameters we need to

look at when we design an interface.

And apart from that we need to look at the fidelity of the data that is the integrity of the

data whatever we transmit from one point to another point should reach that point

without any damage without any change; that means, no changes should be there in the

data during transmission. So, whatever we transmit from one point to another point it

should reach the without any variation. So, that is the integrity of the data transmission

that is also that is one of another important factor to be considered in the design of

interfaces.

And then deliver every item placed on the interface. So, the interface should deliver

every item placed at the interface. So, it is not filtered out or it should not lose because of

external interference or any other factors there is not be any loss of data in at the

interface for every item place that the interface should be transmitted.

And the other one is basically it should detect faults and recover gracefully. So,

whenever there is a fault or in a system that is error happening the system should be

capable of coming out of that situation gracefully that is without causing any other

damage to the other systems. So, whenever there is a problem identified by the interface

it should try to minimize the damage and eliminate that particular damage and then start

continue to function normally without affecting other system performances. So, these are

the important requirements for interface.

So, whenever we design interface we look at these parameters these factors and then

ensure that whatever the architecture we choose for the interface basically meets all these

requirements. So, that there are no problems in the interface whatever the data we want

to transmit is getting transmitted and there now, there is in error the system tries to come

out of it gracefully and continue to perform without much problem for the whole system.

(Refer Slide Time: 16:11)

Let us look at the some of the, and generic interface architecture there are different

architectures available depending on the situation we need to choose this architecture.

So, there are basically three generic interface architecture the first one is known as

message passing. So, this is a something like a mail delivery that predictably occurs once

or twice a day allowing the receivers to access it immediately or it until a more

opportune time. So, it is a very predictable data exchange. So, the system will be

knowing that what will be the frequency at which that data will be transmitted. So, every

hour or every second depending on the subsystems the system can actually identify what

is the frequency of this data transmission and it will continue to transmit this data and the

receiver can actually access it immediately or actually can access it at a later stage. So,

this kind of architecture is the message passing. We will see the details of message

passing bit later.

The other one is shared memory architecture this is something like a meeting or

conference in which only one person speaks and conveys relatively compact messages

where all can hear what he said, but yet are restrained from other productive work. Here

it is unlike the message passing it is like where everyone can speak, but not at the same

time. So, one person can actually speak and others can listen and other whenever one

person is speaking all other only others can what can do is only to listen to that one. So,

they cannot really interact. So, it is only one way communication from one person. So,

he passes the message to a shared memory and others can actually get it from that

memory shared memory. So, that is the shared memory architecture.

And the last one is the network architecture which is very common. So, it is like a

telephone conversation that can involve message. So, widely varying lengths and can be

instigated at almost any time. So, this is network which is very common in most of the

systems. So, here we can actually pass messages and different people can hear and then

others can also pass messages we can have different architectures and network itself

depending on the requirement can have one to one or you can have one too many or you

can have redundant communication and network or loops that is the network

architecture.

(Refer Slide Time: 18:32)

Let us just see the architecture of the message passing. So, that was the first one we

discussed the message passing architecture. This is basically predictable exchange of

information.

So, as I mentioned the predictable exchange of information whenever. Now, there is a

predictable exchange of information we can use the message passing architecture. This is

commonly found as an internal interface in system. So, this cannot be normally used has

between the system and the external system because the external system the interaction

between system and external system may not be always predictable, but within the

system the system designers will be knowing what kind of data to be transmitted

between the subsystems. So, in that case we can go for a message passing architecture

because of the predictable nature. And every message here will be consisting of a

protocol and data segment. So, the message to be passed between the elements of the

system of the subsystems will be having a message protocol and a data segment.

The protocol segment will include us the size of the message and address of the node to

receive the message. So, when we have multiple nodes in the system, so the message will

be having a protocol which will actually tell the size of the message and address of the

node to receive the message and then other segments will be having the data segments

also. So, this actually the first segment will tell to whom the particular message is

addressed and then what is the size of the message and the second, but will give actual

message.

And the message passing protocol or the communication the process of communication

in message passing architecture is basically one nodes must will control over the

communication channel by a priority scheme implemented by the system.

(Refer Slide Time: 20:02)

So, there will be many people who using the same interface. So, one node must win

control over the communication channel by a priority scheme. So, this priority scheme is

design by the designers. So, the system designers will be knowing which one is more

important and how do we actually prioritize between different nodes in the system and

based on that priority one node will take over the control of the interface. So, this node

will be able to transfer the data once it has got the control over the nodes.

And the winning node becomes the master and sends a protocol segment to the intended

receiving node. So, once the node takes. So, the control over the network or the interface

it actually provides in becomes a master and sends a protocol segment to the intended

receiving node called slave. So, now, it becomes the master and all of that become

slaves, then it will send a protocol segment to the receiving node which is the slave here.

And once the slave node notify the master that the protocol segment was received

successfully. So, once the master sends a protocol the receiver receives it and then gives

an acknowledgement that the protocol has been received successfully and once that

happens the master sends the data segment to the slave.

So, basically the master will be sending the data to the slave or the other way if the slave

can actually give a segment saying that the data has been received. So, the master can

actually send the data to the slave and then slave will give an acknowledgment. So, this

is the normal process of communication in message passing architecture. So, there will

be multiple nodes, one node will get the control of interface and then that node becomes

the master and then it sends a protocol segment to the slave and the slave accepts that

protocol and confirm the received of the protocol and once that is confirmed master

sends that data and then the play acknowledges a received of data.

So, that particular cyclists over and then the node will actually give you the control the

master surrenders control of the communication channel. So, once that the predictable

exchange is over and master will just surrender the control of the communication

channel. So, that any other node can actually take over that particular become a master

again based on a priority scheme. So, this is the way how the communication takes place

in message passing architecture.

(Refer Slide Time: 22:49)

And this is the most preferred application of message passing for system that can define

a predictable message transmission scheduled upon initialization. So, message passing as

I mentioned can be used for predictable data exchange. So, whenever system initiates

and there are predictable data exchanges for such systems only this is most appropriate.

So, the system designers will be knowing how the system works and what kind of

interface data transfers takes place, so based on that we can go for this particular

message passing architecture.

And here the update rates are on the order of 0.01 to 1 second. So, that is the update rate

in transmission and message passing is not preferred where substantial portions of the

traffic include asynchronous communication. So, when there is asynchronous

communication where it is not predictable or it not happening in the periodic interval and

that is a very substantial part of the communication then it is very difficult to implement

message passing architecture because it is barely used for predictable data exchange

only.

So, whenever there is an asynchronous data transmission we go for the next one which is

called the shared memory architecture.

(Refer Slide Time: 23:55)

Here in shared memory architecture asynchronous communication requests are handled.

So, unlike the message passing where it is predictable data exchange in shared memory

we go for a synchronous communication. So, whenever there is an asynchronous

communication request with go for the shared memory architecture. Here a fast access

storage device typically a memory device is used. So, this is the shared memory basically

shared memory is shared by different nodes, so a fast access storage device that is used

as the memory device.

(Refer Slide Time: 24:36)

In the communication process in this is basically a processor generates a read or write

request for another address in shared memory. So, the shared memory will be having all

the address of those nodes which are using the particular shared memory. So, processor

generates a read or write request for another address in shared memory whichever system

wants to transmit a data to a particular another node. So, it actually generates a read or

write request for that particular address.

The current owner of this variable is notified of the request. So, one variable may be

used by some other owner or some others are using the particular variable then this will

be notified and to that user and the memory of that current owner is dumped to the

shared memory. So, whoever wants to write a particular variable suppose there are some

global variables to be updated like temperature or pressure or some other data to be

updated in the system in that case whoever wants to write or update that data will send a

message to the shared memory requesting for access to that particular variable. So, some

other system may be using that variable. So, that particular subsystem will be intimated

about this particular request and then if it is possible to dump that particular variable then

the present user will dump that variable to the shared memory and then the read or write

request of the processor is completed with a data transfer.

So, once that is a made available to the requester then the data transfer will take place

and again the variable will be available with the press the owner till the next free case

this owner variable will be kept there and whenever there is another request for this data

this particular variable that will be a dumped again to the memory and can be used by

other users. So, this is the normal communication process in shared memory architecture.

So, as I mentioned there is a memory device a fast access memory device you stay here

and whenever a particular user wants to access a variable in the shared memory it gives a

notification. And then whoever is using that variable will dump that variable to the

shared memory system is requested for that variable can read or write the data and then

again complete the data transfer and then release that variable or you can keep is the

variable till the next request comes. So, this is the normal way of communication in

shared memory architecture.

So, here actually can be asynchronous because I mean there are there is no particular

time interval on which the particular data comes. So, whenever any system wants to

access the variable and then transfer the data.

(Refer Slide Time: 27:23)

So, the problems with this shared memory architecture is that the performance of this

degrades substantially if the requested information is not in the cache memory of the

interface. So, whenever that particular information or the variable is not available in the

cache memory then it becomes a problem and the performance degrades because it will

wait for that data to come or this activity is blocked until the required variables are

retrieved.

So, until that the particular request is completed do not be able to do any other task. So,

whenever a particular variable or a task is not this not available within the cache memory

it has to get it from some other users then it will wait till that variable is made available

and then only it will go for the next task. So, that the actually this may reduce the

performance sometimes. So, that is one of the problem with the shared memory

architecture.

And it works invest in highly parallel software applications in which the global data of

each application must be accessed frequently by the application and infrequently or

never by other applications. So, this is best architecture for parallel computation

applications parallel software applications where the software will be having some global

variables it will be used by other subsystems, but it has to update the data frequently. So,

in this case this particular application can actually access it frequently and then update it,

but others may or may not be using it. So, that kind of situation this is well suited.

But in the cases where others are also using then that first problem will be there like the

edges to wait till that is made available to the first application, so that may degrade the

performance. But otherwise if there is only it is a global variable which need to be

complete related frequently by the application then this is a very good architecture.

(Refer Slide Time: 29:09)

Last one is the network architecture. Network architecture as the name says it is a

distributed collection of shared memory system. So, you have multiple shared memory

systems in a network that is the network architecture normally the local area network.

So, here you will be having multiple shared memory systems. So, we can actually

interconnect many shared memory systems to get network architecture.

So, here each shared memory system has the ability to tap into the shared memory of

other systems. So, every shared memory can actually tap into the memory of other

shared memory systems. So, that is how we are actually networking it. So, you have a

multiple set of shared memory system each one can access the shared memory of other

systems also. And provides a demand based service unlike message passing where

scheduled transfers takes place again here also its a demand based service not like the

message passing where it is fixed or the scheduled transfer its more of an demand based

service. So, whenever a system wants to access the shared memory of other system. So,

it can actually demand for that particular variable or particular access and it will be

provided. So, based on the demand it can be provided.

And then networks can serve hundreds of nodes. So, the advantage here is that it can

have hundreds of node message passing can its limited to only thirty two nodes. So, here

that is the advantage you can have a number of nodes in the network and it includes

communication hardware and software package. So, you will be having a hardware for

communication and along with that there may be a software also it will be the network

operating system.

So, apart from having hardware software will be there to regulate the flow of traffic and

provide regulated access to different shared memories. So, and we need to use a network

operating system to provide that and the software provides priority based queuing model.

So, this software will be having some priority based models queuing models so that

access to the two different resources will be based on this particular priority that is

decided by the system designer, but that is implemented through the network operating

system it will priority based queuing.

And it provides extensive fault checking also. So, apart from providing the interfaces it

actually end a queuing models the system will provide extensive fault checking also.

These are the important points about network architecture. So, you have many shared

memory systems connected together and you can have hundreds of nodes because it is

not limited to the message passing architecture or other architecture. So, you can have

multiple nodes here and there will be hardware and software attached with this and the

software provides a priority queuing models as well as for the fault and fault checking

systems also.

(Refer Slide Time: 32:04)

Let us look at some of the network architecture is commonly used in engineering

systems. Again as I told you we are looking only at the communication system here as

the interface. So, in the network architecture there are most commonly applied or

implemented architectures are master slave or pipeline architecture our m bus

architecture, another one is the star or spoke architecture, then the ring architecture and

mesh architecture. So, these are the commonly used in engineering systems.

(Refer Slide Time: 32:36)

The master slave architecture as you can see here this is a master slave or a pipeline

architecture where you have components C1, C2, C3 and there is interface I12, I23

etcetera. So, this kind of architecture allows you to have communication between

adjacent blocks or adjacent components. So, C1 can actually communicate to C2, and C2

you can communicate to C3, but there is no other communication possible here.

So, this is appropriate and the components only need to communicate with their neighbor

in the network. So, whenever procurement is only to communicate with the neighbor

then this is the best way of architecture that this is the pipeline architecture. Though I12

I23 represents the interfaces and C1 C2 axes there are represent the components for

communication. So, limitation is that it can communicate only with the neighbor. So, C1

can communicate only with the C2, similarly C2 can communicate only with the C3 or

C1 because these are two neighbors. So, whenever these the requirement is only

communication with neighbor you can implement the pipeline architecture.

(Refer Slide Time: 33:42)

And the other one is the bus architecture which is the most common architecture we can

see it in many places this kind of architecture where there be a common interface I123

where I can have one two three is actually here C1 C2 C3 are the components. So, these

components can have common interface element. So, I123 represents the common

interface between these components.

So, he can actually have any number of components over here. So, this bus will act as an

interface between all these components. So, you can actually have communication

between C3 to C1 or C2 to C3 through this interface or you can have any number of

components and all these components can have an interface can this connect between

this components through the interface. And this is appropriate for large number of

components when you have a large number of components to be connected then this is

the most appropriate one versus the bus architecture where you will see in many of the

computers and other systems bus architecture is employed because you can have many

components connected to it and all the communication can be through a common bus.

This is a very commonly employed architecture in networks.

(Refer Slide Time: 34:51)

The third one is known as the star or spoke architecture. Here you can see that it actually

takes one component as a master or a central processor which actually manages the

communication between different components. So, you can see here take C4 is taken as a

central processor and then this actually allows communication between various

components I14, I24 or I34 these are the interfaces provided here between 3 and 4, and 2

and 4, and this is 1 and 4, this is I14. So, these are the interfaces provided between the

central processor and the components and if the C3 wants to communicate with C2 and

actually C4 can manage this through this I34 and I24.

So, the central processor this actually can manage communication between other

components also. Here it is not only one to one communication we can actually have

communication between various other components also only thing is that this is managed

through a central processor. So, that is the difference here in a star or spoke architecture.

This again useful because if want to have not regular communication with the

component, but still want to have some kind of connectivity between different

components then it is possible to use this kind of an architecture because the components

the central component can actually manage the communication between various

components.

(Refer Slide Time: 36:13)

And this is known as the ring architecture which is again it is more like a closed loop

control you can have communication between C1 C2 C2 C3 C 1.

So, these are the interface elements which actually makes it possible to have

communication between elements and again it is a closed loop, but still not always one to

one communication may be possible because in this case means only three components

you can have C3 to C2 C3 to C1 like that, but when you have more components then this

may not be really possible, but still you can have a closed loop architecture using a ring

architecture. So, that is normally used in for office settings.

(Refer Slide Time: 36:53)

And this is an extension of the ring architecture. So, ring architecture as I mentioned

when you have more components then it may not be possible to have ring architecture.

So, in this case you can go for mesh architecture.

This mesh architecture basically provides redundancy because you can have multiple

connection you can have many ways of connecting to a particular component. So, you

can have a redundancy between the components and then it is used in parallel computing

and telephone networks. So, commonly used in parallel computing and telephone

network where you will have multiple activities provided over here. So, you can have

multiple connections or redundant connection between different elements as you can see

C1 is connected to C2, C2 is connected to C3, C3 to C1, and C1 to C 7, C 6, C3, C6 to

C4, C4 to C5 like this. So, you can have multiple redundancies also in the network.

So, if one of these links are not working then probably it can actually connect through C

Cs can be connected to C4 through these links through I56 and I45. So, this way you can

have a redundancy in the connection bring similarly you can provide a connection

between C6 and C3 also or you can have a connection between C6 and C1 by providing

another interface through this. So, like this you can have multiple connections and

redundancies can be incorporated which is useful whenever you need a very reliable

network connection especially like a telephone networks you found line fails you can

actually go for another way of interacting or linking the components. So, in that kind of

situations a mesh architecture is use.

(Refer Slide Time: 38:29)

So, this other about the interface is commonly used. We can have different kinds of

interfaces as I mentioned we can have a message passing architecture or we can have

shared memory architecture or you can have network architecture. And we saw that

network itself we can have different ways of thinking the a nodes you can have a mesh

type or star type or you can have an in line or I pipeline type of architecture, but

whenever we have this kind of architectures it is necessary to have some kind of a

standard where we ensure that whatever the form you use it is possible to have to

maintain some kind of a flexibility within the system. So, we need to have various

aspects for the system like we would like to have the system to be interchangeable that is

if you are using a particular network or architecture we should be able to use different

components that basically a interchangeabilities, basically the ability to interchange

components with the performance or cost characteristics.

So, if you want to change one component in terms of performance or cost characteristics

if you want to change with one component then it should be possible. And similarly you

should be able to have interoperability also basically they ability to operate with a wider

variety of external systems. So, whenever you have many external systems and you want

to operate with different systems then you need to have inter operability also. Similarly

portability is the ability to run on the area system, if you have particular software and or

hardware you should be able to run it on a different system. So, you not be restricted to a

particular operating system or a particular hardware, so we need to have portability also.

Similarly when you have a standard followed then we can actually reduce the cost and

the risk of using that particular one and there you can have an increased lifecycle because

we always follow a particular standard in interfaces. So, this actually shows that we need

to have a proper standards in developing the interfaces basically to ensure that whatever

we develop can be interchanged with other systems or we can have an interoperability

basically like personal computers normally designed with a standard interfaces power

supply or hard disk or the ram that we always having some kind of a standard.

So, that you can change the component or we can operate it with a different component

or you can actually put it in a different system. So, like this, this standards basically

allows you to have freedom in the design as well as ensure that the cost and performance

around optimized. So, there are different standards to be followed and there are

commercial and existing standards in interface design.

So, we will stop here for the time being and we will look at the this standard what kind

of standards are being used in the industry in the design of interfaces and how important

they are and how do we actually implement these standards in a interface design these

points. We will discuss in the next class, till then good bye.

