
Affective Computing
Dr. Jainendra Shukla 

Department of Computer Science and Engineering
Indraprastha Institute of Information Technology, Delhi

Week -11 
Lecture - 01

Case Study: Emotional Virtual Personnel Assistance

Hi friends, welcome to this week's module which is a Case Study. And in this week, we are

going to talk about how to develop a Emotional Virtual Personal Assistant as part of this case

study.

(Refer Slide Time: 00:40)

So, basically so far, we have learned a lot about the theoretical aspects of a fatigue

computing. Now, the idea of this week's lecture was to bridge the gap between the theory and

the practice for you. So, here we will try to understand how can we apply that we have already



learned in the previous weeks to develop an application, to develop a device which is

emotionally intelligent and can be used in real life.

I will try to provide as much codes as well and hopefully you will get to play with it in your

own time. So, here is the outline for this week's module. First, I will be talking about of

course, the motivation behind the development of such an emotionally intelligent virtual

assistant. What could be some of the challenges? I will be talking about the methods and the

techniques using which such an assistant can be developed. 

And I will be talking about the ethical concerns around such a system when it is deployed in

real life. And I am glad to inform you that we also have managed to do an interaction with Dr.

Aniket, who is a faculty in Purdue University. And his most of the work is related to the

effective computing and emotionally intelligent machines. 

And we will be talking with him at the last of this lecture to understand how has he been you

know investigating in this area and how he has been developing some of the real world

applications by making use of his research in his lab at Purdue, ok. So, with that let us get

started.



(Refer Slide Time: 02:23)



(Refer Slide Time: 02:26)

So, first thing that we want to understand is what exactly is a virtual assistant. Now, when we

talk about a virtual assistant, basically virtual assistant is something that we all have seen is

just like Alexa, Siri, Cortana, etcetera. And the idea of virtual assistant is that it takes an input

or it interacts with the humans and it takes as an input their voice. And it could be started

with a follow some wake word such as, Hey Siri, Hey Google. And then of course, since

speech is the modality that we are taking it as an input.

So, please pay attention that speech becomes the mode of the communication. Then the next

thing happens is the automatic speech recognition. Of course, the assistant tries to understand

what is that the user wants to communicate or wants to understand. And this is where you

know when we talking about the automatic speech recognition, this is where we also we will



try to understand the emotional context of the entire interaction between the agent and the

humans.

Once we have understood the intent and the emotions that are there in the speech, we will try

to of course, you know apply the NLP and try to understand how can we respond to this

particular request that the user has made. And then there is of course, dialogue management

system which helps to create this interaction between the user and the agent.

And then once you are the agent is ready with the response, then the agent you know converts

the whatever response that it has in the text format to a speech format and send it back to the

user. So, as simple as that, you may ask for example, Hey Siri, how is the weather today?

And Siri would respond that, ok, the weather is sunny and warm for example, righ t? And this

is where you know we want to insert the emotional intelligence component into it. So, what

we are talking about here is trying to develop an Alexa, Siri or Cortana kind of assistant, but

which is also emotionally intelligent. So, I hope that it is exciting and fascinating enough for

you.



(Refer Slide Time: 04:42)

But if not, then let us try to look at that what could be some of the use cases of such an

emotionally intelligent virtual assistant. So, for example, this kind of assistant can be used in

mental health and the therapy, where the what is this kind of assistant can be used to help

people with mental health disorders or for example, emotional struggles. 

This kind of agent, it can recognize the user's emotional state and it can provide guidance and

it can you know support with the coping strategies and emotional support in the real time.

And on the top of it, this kind of an agent, it can track the user's emotional state over a period

of time. And it can provide insights to the therapists and to other healthcare providers or let us

say you know to their nearby stakeholders to their nearby relatives and friends.

So, that is one interesting application. Other application that could be is the customer service

in providing the customer service and the support. So, in this case, such an agent can be used



in to provide a more personalized and empathetic experience to the customers. And the idea is

here that such an agent while doing an interaction with the customer will be able to recognize

user's emotions. 

And it will be able to tailor its responses accordingly to provide let us say more positive and

satisfactory responses to the user. And we all have seen you know how the customer service

agents interact with us. And definitely it is a very tiring job hats off to the customer you know

care agents. But of course, we can always do better in this area. 

One other domain that it can be really interesting to have this kind of an agent is the

education. So, in the education domain, such an agent can be used to help students learn more

effectively. So, the idea is very simple, that if you have such an agent, it can try to identify

when a for example, a student is struggling and you know needs more support or needs

additional support.

And hence, it can help provide targeted feedback and support to them to overcome you know

whatever obstacles they are facing in learning a particular topic or a concept. Other for

example, very important category could be the entertainment. So, basically this kind of an

agent can be used in entertainment to create more engaging and interactive experiences which

can be really of lot of demand.

So, for example, imagine that you have a video game which is using this kind of virtual

assistant. It can adapt to the player's emotional state and maybe provide a more immersive

and you know adaptive environment for to for the user to enjoy. So, this can be a very

interesting application. 

Other interesting application that frankly speaking I and all my colleagues in the academia

would definitely appreciate a lot is having an virtual assistant that can be used in the

workplace to help employees manage their stress, improve communication and increase

productivity.



So, it is very common for the work place for the individuals who are working in a particular

workplace to get overwhelmed from time to time with the anxiety and stress and the lots of

tasks that are there hand. So, the idea is that, can this kind of system provide understand you

know when the employee is feeling for example, overwhelmed or frustrated. 

And maybe it can provide support and additional resources to help them become more

effective and overall have a positive experience while conducting their job. So, that is one

and of course, these are only few pointers that I am mentioning, but of course, there could be

many more applications. 

And to answer to what else I would let you think about it that what are the other domains

where you would like to use such an emotionally intelligent virtual assistant. So, imagine that

if you have a Alexa or a Siri or a Cortana which is also emotionally intelligent what can you

do with it. So, the creativity is the only limit here.



(Refer Slide Time: 08:52)

So, I hope that you have been feeling motivated enough to have such a system. And to

develop such a system and to go through the case study of it. Now, of course, such an system

is not going to be easy to develop. So, let me make your hopes not so high, but of course, we

will see what could be some of the challenges. And by no means this is an exhaustive list. I

am just trying to provide some pointers here.

Of course, the very first challenge that is there is the accuracy. So, what we want? We want of

course, such a system to be as accurate as possible, but it can be really difficult because there

is lot of variability in the emotional expressions as across individuals, cultures and the

context. And I hope you can see that the type of the modalities that we are talking about here

is the speech modality.



So, you may want to recall the concepts that you have learned during the emotions in speech

lecture by my colleague Dr. Abinav. So, the idea is that ok, here there is lot of variability.

And this variability can be due to different many different factors which was discussed in that

particular lecture. 

So, for example, it could it could be due to the speech patterns due to the you know accents

and different dialects, right. And as simple as that for example, when you are making a

speech there is a even bigger challenge apart from the dialect and accents and everything is,

how can such a system detect sarcasm or irony in a speech when it is communicating with the

humans. 

We humans are very good at making you know sarcastic comments and of course, we use it

very efficiently in our day to day communications. So, if we were to use such a

communication with an emotionally intelligent agent, how can such an agent detect that kind

of thing. And of course, these are can be you know the agent has to look into the tone also has

to understand the context and so many other things.

So, nevertheless accuracy remains a big challenge for this. Of course, other big challenge of

such a system that we can envision is the operational requirements in real time. It has to be

able to perform in real time. Because if not real time then we will not be able to provide a

seamless user experience, right.

And of course, what it requires? It requires the processing and the response time should be

very very efficient. And of course, it has to be supported with a high performance hardware

and the software. So, this comes as a trade off between what we want to invest and what we

want to gain out of it. But nevertheless, the idea is that we should not be able to make the

compromise with the user experience. Otherwise, the users will not interact with it and it will

lose its purpose, ok.

So, third point is the multi-language support. Multi-language support, I think this is even

more applicable to a country like us like India, where we already have 20 plus official



languages. And unless and until we are able to cater to the needs of all the languages, we will

not be able to reach to the big portion of the individuals in the domain.

One other interesting challenge is of course, is of the bias and the discrimination. And it turns

out that like any other technology, this particular technology or the virtual assistant that we

are going to develop. It may also reflect the biases of the individuals like us and also, like the

data sets, who create and train the models and it can potentially lead to the unfair treatment of

certain groups.

And this biases that we are talking about and hence resulting discrimination can be due to

several factors. It can be for example, due to data bias. So, for example, the data that has been

recorded. Imagine if we are recording a data that is only making use of individuals or the

participants from northern part of India.

Then of course, we may not be able to cater to the exact requirements of the users from the

southern part of India for example. Other thing could be is the gender bias. What is gender

bias? Imagine that we are having a data where all the participants or majority of the

participants, they are belonging to one particular gender, say male.

And then there are very few females in the category. Then of course, the model may have a

very hard time in trying to understand the emotions from other gender or other genders in this

case. Similarly, of course, we can have a culture bias as well, which we already talked about

in the last thing.

Culture bias is basically, you know it turns out that there are certain regions of certain regions

where people may have a higher tone in comparison to the other regions. And similarly, there

could be other cultural differences. So, taking into unless and until we are able to understand

the entire demography of the participants, which are our target users, we will not be able to

completely get rid of the bias that may be present in the such a system that we are trying to

develop. 



And last, but not the least, of course, there is a privacy concern can be a big concern when it

is comes to the development of the such virtual assistant. And the idea is of course, we should

not be able to collect the data without the user's knowledge or their consent. And of course,

even if we are collecting the data, we need to have a very robust data encryption protocol. We

need to have a secure storage of such a data and all the transmission protocols. 

And we need to have the compliance with the privacy regulations, not only at the national, but

also at the international levels such as GDPR and the HIPAA regulations that we have now.

So, this is the very, very important requirement. And these are some of the interesting

challenges that can be there in while developing such a system.

And of course, as I said, I mean these are by no means an exhaustive list. So, there could be

many other challenges. And I invite you to please brainstorm about it. What do you think

could be more challenges when it comes to the development and the usage and the

deployment of such a emotionally intelligent virtual assistant, ok.



(Refer Slide Time: 15:15)

So, now having understood that what exactly we are talking about, we are talking about a

development of an emotionally intelligent virtual assistant. In short, its Alexa or Siri plus

having emotional intelligence. We already saw that can be have lots of use cases in the

education, entertainment, mental health, workplace productivity so on so forth. And then we

also looked at lots of challenges. 

So, having looked at all those things, now we can try to formulate some of the requirements

that it may have. Please note that the exact requirements may vary from one to another and it

will depend on the business use case that you are trying to have and which may come from

you know the managers or which may come from the business stakeholders also.

So, of course, the very first requirement that whatever system we are developing, it should be

able to recognize emotions in speech as simple as that. And let us say that you know for the



sake of the simplicity, taking as a example, it should be able to distinguish at least the basic

emotions of happy, sad, angry and neutral. So, we are just talking about the basic emotions

and rather than talking about you know like the entire spectrum of the emotions to keep our

life easier. Of course, we have already gone through the emotions in speech.

So, we are going to rely on that understanding a lot. If you have not gone through that or if

you do not recall some of the concepts, then I will invite you to please go through that and

revise emotions in speech and then maybe come back to this part later. Of course, this is the

first requirement. Of course, second requirement is it should be able to take the data as an

input in a voice format. So, we do not expect the user to type like a chatbot, but we expect the

user to say something using a speech modality.

So, it should be able to recognize the emotions in their speech, it should be able to take which

underlying hypothesis, it should be able to use the speech as an input. Of course, while doing

so, the idea is the it not only should be able to understand the emotions, but also it should be

able to understand user’s intents and it should be able to generate appropriate responses. 

So, for example, maybe the user is asking something and it should be able to understand what

is the user asking and there may be certain emotions attached to it so both. So, intent plus

emotions. And as of now, most of the time the virtual assistants that we see, Alexa, Siri,

Cortana and all that, they are able to understand the intents, but maybe they are not they do

not have a lot of understanding of the emotions or emotional intelligence, right. 

And of course, it should be able to provide generate appropriate responses taking into account

both the intent plus emotions, ok. That is the difference between the agent that we are trying

to develop and the agent that has been developed in the past. And of course, we already

established that unless and until its working in real time environment or in a near real time

with a near real time efficiency, it will not be able to serve the need of the user.

And having raise the concern of the privacy, of course, we already understand now that we

should be able to protect the user data, primary we are talking about the speech data and of



course, we may have access to certain demographic information such as you know the user's

identification information and location and all that.

So, we should be able to protect user data, speech and the personal information. As I said by

no means all this is an exhaustive list. And for example, we can keep on adding the

requirements to it and one nice requirement to have would be. So, I would say that these, the

top 5, these are something that we can term it as a essential requirement because without

having it, I we may not be able to you know launch even to a particular city or even a

particular region.

And this is something that we can call it as you know good to have kind of thing. But of

course, if it is not, if you do not have this multilingual support, we may not be able to cater to

the multiple users to a user-static scale. But nevertheless, having top five is a good start for

us. 

And of course, as I said, the exact specifications of such an agent may depend on the business

use cases. And I will invite you to brainstorm about it that what could be the business use

case that you are targeting and what additional requirements could be there for such a

business use case, perfect.



(Refer Slide Time: 19:51)

So, having understood now that what exactly we want to develop. So, we want to develop an

emotionally intelligent virtual personal assistant. Just like Alexa, Cortana, Siri, but with an

emotional intelligence. I will keep repeating it again and again. So, that you understand it very

thoroughly. Now, let us try to dig in a bit more technical aspect of it, that how exactly can we

develop such an agent?



(Refer Slide Time: 20:21)

And I think we know already the answer to it. But of course, here we will try to put different

pieces together and hopefully it will make some sense. So, here is a very skeleton code that I

have tried to prepare which gives rough idea about what are the different steps that we are

going to follow to develop such an agent, ok. 

Of course, imagine you know this skeleton agent code has been developed in Python. I will

provide you the code files as well, just so that you can play with it. So, for example, you

know this is of course, you are going to have to input some libraries such as speech

recognition as simple library which.

And then you know of course, you are going to initialize the speech recognition and the

language identification objects, you know create some initial objects and do some

initialization. You are going to initialize the virtual personal assistants depending upon you



know you may be using a particular set of hardware and the software. So, you want to

initialize them. 

And then this is where you know you are going to keep track of the user's personal

preferences and users for example, history over a period of time and things like that and that

is where we are going to just call it as a context. So, basically you would like to keep a track

of the user's context and hence you may have a context object as well and you want to keep

updating that. Then of course, you know then we are going to this is something that is going

to run in a infinite loop continuous loop and basically zero.

So, that is why we have a while true loop of course, while true then we are going to have we

will keep listening to the user's input. And once we listen to the user's input, we are going to

get an audio of it.

(Refer Slide Time: 21:57)



Once we have the audio of it then of course, depending upon what are the functionalities that

we have, may be one of the first thing that we may want to do, we may want to identify what

is the language in which the user is speaking. Having identified the language, may be may of

course, the next step would be to understand what is the emotion that is there in the this

particular speech data.

We may want to you know understand; convert this thing in the text format to be able to do

some more processing over it. We may want to having identified the emotions; we also want

to identify the intent. For example, if the user is asking something, saying something,

commenting something, things like that. And so, you may want to understand the intent of the

user as well. 

And then of course, then taking into account please pay attention to this point, taking into

account the intent, the emotion and the context. So, the context could be the user's

preferences, users history over time, how the user has been interacting with the system,

maybe the system is able to you know understand what sort of preferences the user is

developing while having the interaction with the agent. So, this is the context.

So, basically now the appropriate response is going to be developed with the help of the

intent, emotion and context. These are the three things that are really important for such an

emotionally intelligent virtual agent. And after that of course, you know once we have a

response text.

We can simply convert the text to a speech because we want to convert communicate back to

the user in the form of a speech. And once we have this response audio, we can simply play

the response audio in a speaker and then that is how the user is going to understand to it. And

of course, then accordingly if we have certain update in the user's context, we can do that

update in the context and then this can go on you know in a while low. 

Roughly speaking, this is the skeleton of the our emotional intelligent virtual assistant. As

you can see, this is really, really, really simple. But of course, this captures the gist of the



entire system. I will invite you to please go through the skeleton code that will be provided to

you with this week's lecture module, perfect.

(Refer Slide Time: 24:11)

So, we have understood the top level idea. Now, let us try to see what how an end-to-end life

cycle of this system will look like. So, this turns out that the end-to-end life cycle of a system

is not going to be very very different from a typical machine learning or deep learning

systems, where for example, we have two major components of it.

One is the machine learning aspect of it and one is the operational aspect of it, where we have

the deployment and all that. So, we will talk about all these aspects in bit detail, but basically

when we talk about the machine learning aspect of it, what it means? Of course, we need to

have some data.



We are going to you know, play with the data, do some pre-processing, feature selection

extraction, all those kind of things. And then after playing, we are going to create a machine

learning model, which is going to you know in this case, going to help us understand the

intent, the emotions and maybe the context also to a certain extent.

Of course, then we are going to you know, do the registry of such a model and then we deploy

in real system. And once we have done the deployment, then maybe of course, we will have

to keep monitor the usage and the working and the functioning of such a system. And as and

when required, we may want to re-train the system and having retrained, we may create

another version of the model. And then that is how you know the operational deployment it

goes on.

So, basically this is the rough roughly the end to end life cycle of our virtual assistant will

look like. One aspect that we are not focusing a lot here is the hardware aspect is because it is

understood that of course, along with this software, we may want to give it a shape of a

hardware, a tangible interface, which is could be in the form of you know like for example, a

Google speaker or for example, any device which is you know sitting on your table.

But nevertheless, there is going to be an hardware plus software component. Here, we are

focusing more on the software, but you can easily integrate the hardware development part

into it as well, perfect. So, now we have understood the end to end life cycle. So, the very first

step is the preparation of the data. 

And this is I would say this is the second step, I would say this is the third step, this we can

call it as the fourth step, this is the fifth step and of course, this is the sixth and the seventh

step as required. So, let us talk about the very first step, which is the data or the preparation of

the data.



(Refer Slide Time: 26:52)

 So, ok, before I discuss it, what do you think what could be the type of the data that we will

need? So, our idea is that we want an agent which is able to recognize the emotions in the

speech. If you recall your concept and understanding from the emotions in speech module,

then of course, what we need? We need a data set of audio recordings and hopefully

corresponding emotion levels.

And there are some datasets which are existing. And for example, we have talked about the

EmoDB and RAVDESS datasets. So, maybe we can make use of either of these datasets.

Apart from this, there is this IATKGB datasets also, also that was discussed in the class. And

we may you may want to use the data set as well. Because for example, EmoDB and

RAVDESS, for example, they do not cater to the Indian population, because they have been

recording recorded mostly using western participants. 



Nevertheless, for the sake of the simplicity, let us assume that we take one dataset, it is the

EmoDB dataset. What exactly this EmoDB dataset or these datasets that we are going to use

will have or need to have? Of course, they need to have the text data and the speech data that

is labeled with the emotion categories.

And such as, for example, what we are talking about is imagine that we have an audio signal,

which is saying, I am so happy to be here. There is an audio, there is a corresponding text, and

then of course, there is an emotional label associated with it, which is happy. Similarly, we

have another audio signal; I am feeling really sad today. There is an audio, there is a

corresponding text, and there is an emotional label to it, which is sad. 

Similarly, for example, we have another audio signal, I am so angry with you right now.

Audio corresponding text, audio, corresponding text, and then there is this emotional label

angry ah. And then just for the sake of completeness, there is another type of audio signal,

which could be you know, for example, I do not really care one way or the other. It is

something like you know a like neutral tone. So, you have a speech data, which says, I do not

really care one way or the other.

Then you have a text data corresponding to it, and then you have a emotional label attached to

it, which is the neutral label. So, this is sort of data set that we are going to have. Of course, it

the exact choice of the data will depend on so many different things, ways. 

Maybe you may want to curate your own data set as well, but nevertheless curating your own

data set so far, I hope that you understand it can be a significant time consuming process, and

it will provide significant resources, depending upon your need and the requirements you may

want to use the existing data sets. Just for the sake of this case study and example, we are

saying that, ok, let us just go ahead with the using of using the EmoDB data set.



(Refer Slide Time: 29:24)

And hence, what we would like to do? We would like to of course, load this data and maybe

you process it to certain extent. So, this is the simple skeleton code. Again, as I said, I will be

providing you the code. So, basically, essentially what we are doing in this particular thing,

that of course, we are importing certain libraries. You may be already familiar with certain

some of them.

numpy, pandas all are basic pre-processing libraries and Librosa OS basically, you know, to

connect to OS for example, in the operating system libraries and so on. So, the idea is of

course, we are going to have a path to the data set. Maybe it is going to be in your virtual in

your drive online drive or maybe it is going to be an audio system.

Then of course, there is the labels we already agreed about it, that we are going to have only

four emotions, happy, sad, angry, neutral for now. We can of course, since we are talking



about the speech data, there is going to be some sampling frequency to it. We are going to

limit the sampling frequency let us say to the 16 Hertz, 16 kilo Hertz. Then we are going to

have a function to pre-process the audio files that we are going to capture. 

So, basically, you know what type of pre-processing we can do? We can basically, you know,

simply do the re-sampling of the data from whatever target frequency whatever frequency it

had to the, maybe you know, original target frequency. So, which could be, you know. So, for

example, 16,000.

We can normalize the file. So, basically, if you remember the normalization, the idea is, if the

data is coming from different users, we may want to normalize it so that we should be able to

make a fair comparison across different users. So, you may want to normalize it. So, that is

how you know, you are going to have a normalized or pre-processed version of the audio file,

that is the function to pre-process the audio files. 

Next, we are going to have another function which is going to load the EmoDB data set. We

assume that we are using the EmoDB data set. You can replace it with any other data set of

your choice. Of course, we are going to have, you know, like all the audio files folder, we are

going to have the emotion path. And for all the audio file in the audio files, simply we are

going to get the y, that is the sample of it. And then we are going to get the corresponding

label. So, the audio file and the corresponding label.

So, basically y and the label. And then of course, we are going to, we can simply append to

the data that we have and then we can create a matrix kind of a structure for it. And this is the

final data that we have already loaded from the data set, from the data set that was available

in a particular folder in a drive or in a on our operating system, ok.

So, now ah, when we call the main function, what is happening? Basically, the very first

thing, we are going to load the EmoDB data set. Once we have done the loading of the

EmoDB data set, we are going to shuffle the data set. So, if you recall shuffling the data set is

basically done to avoid any sorts of bias, you know, that can be there. 



And then we simply shuffle it, you know, and have a good mix of the data that is available to

us. Next, of course, we are going to split the data set into the training and the validation sets

or training in the testing for the sake of the simplicity. So, for example, in this case, we

decided to use 80 percent of the data for the training and the remaining 20 percent will go for

the validation or the testing set of the data, ok. 

Just to make our life easier, we are going to convert the entire data set into a pandas data

frame. So, that to have better manipulation control over the data. And simply we converted

the entire thing into a data frame, which we call the train df and the testing data frame, we call

it as the validation df.

So, this is just an skeleton code. Of course, you may want to tweak it here and there in order

to suit your needs, right, perfect. So, now this caters to our first part of the life cycle, which is

the preparation of the data. Next, we want to explore the data.



(Refer Slide Time: 33:29)

When we say that we want to explore the data, what it means, that we may want to

understand, you know, what sort of feature selection and feature extraction can be done. We

are for now for the sake of the simplicity, we are restricting to a very simple machine

learning, machine learning pipes pipeline rather than you know going into the deep learning

pipeline. 

More or less the steps are going to be the same. So, it turns out if you recall your emotion in

the speech lecture, then there are lots of relevant features for the emotion recognition. We

may want to use for example, some of them, which is the MFCC coefficients. We can look at

prosody features such as pitch loudness, speech rate; we can look at some of the spectral

features, spectral centroid, spectral flux etcetera. 



We can look at some of the time domain features. Now, what exactly these features

represent? You may want to refer to the emotion in speech class to have a better

understanding of it. The idea is that we may want to extract certain features, which are going

to be relevant for the recognition of the speech, emotion in the speech data, ok.

So, let us say that we just identified a list of relevant features. Then of course, once we have

certain features, which could be huge in number, then what we want to do? We want to we

may want to perform the feature selection to reduce the dimensionality of the entire features

and to optimize the performance. And there are lots of ways in which we can reduce the

dimensionality of the feature space. 

And for example, there is PCA, LDA, mutual information based feature selection methods

there are many and then recursive feature elimination and, but, ok. So, we may want to use

one or the other depending upon your specific requirements. The discussion of all these

techniques is beyond the scope of the class. 

But of course, I will request for the interested users to look at these techniques and understand

what could be the pros and the cons of one technique over the other when we want to do the

feature selection. For the sake of the simplicity, we are just going to use let us say PCA for

the feature selection and the reduction of the dimensionality.

Of course, it is important to have an balanced number of features that we are going to use in

accordance with the model that we are going to choose. Because it turns out that if we have

very small number of features and if we have chosen a very complex model, the entire thing

is going to result in an overfitting.

We want to avoid that. Of course, the basics of it can be understood in the in a common

machine learning or a deep learning course. So, to summarize, we have already identified the

data. Now, we are trying to identify what are the some of the features that we can use and

what is the feature selection technique that can be used to reduce the dimensionality of it.



(Refer Slide Time: 36:18)

So, as I said, we are going to use these many features. We are for the sake of the simplicity;

we are going to use PCA. So, let us try to see a skeleton code which is going to help us do

what we want to do for the feature exploration. So, of course, this is you know some library,

initial libraries that we are going to use. 

And then these are some of the parameters that we have to define in order to initialize and

certain components of related to the different features and the feature selection technique that

is the PCA that we have chosen. So, of course, the exact understanding can be taken by going

through by going in detail about a particular feature or the particular technique. 

So, once we have done that, then let us try to define different functions that can extract the

different features for us. Of course, one simple feature could be is the MFCC feature as we



agreed. So, we defined an extract MCC function for that. Other function is to extract the

prosody features from an audio signal which is going to be you know the pitch magnitude.

Again, some other features and then we are going to have another function to extract spectral

features from an audio signal. This is again some spectral features that we have already

defined. We can calculate from the given same audio input. And then we can have some time

domain features from the given audio signal.

So, please pay attention that these are the skeleton code. So, you may want to tweak it or you

may want to add more details to it in order to make it executable. I will be providing you all

these codes for your understanding, ok. So, once we have defined how to do the feature

extraction, how to do the feature you know selection, how to do the feature extraction here.

Next, we can simply do the feature extraction of the selection in a main file let us say. So, we

can simply load a particular audio file.

We can extract the MFCC; we extracted the prosody features using the earlier defined

functions. Similarly, the spectral features, similarly the time domain features, we simply

concatenated all the features into a feature matrix and we can simply apply the PCA on the

top of it.

 And then this features PCA is going to is going to represent the reduced dimensionality of

the entire features that we have selected. And how many components since we have defined

20 components. So, this is going to reduce the dimensionality to the 20 principal components

of the PCA module.

Perfect, so, I hope that now the second step is also a bit clear. So, to summarize what we are

trying to do is we have done the prepared data. We have already explored the features that are

there. Next, we may want to dive a bit into the model.



(Refer Slide Time: 39:09)

So, let us try to look into the model now. So, basically for the model, now there are two, we

are trying to club two steps, model and the registry, we will talk a bit more about it. So,

basically when it comes to the model, of course, we are talking about a machine learning or a

deep learning model. The very first thing we have to do is we have to define the machine

learning model architecture. 

It could be as simple as that. So, for example, maybe if you want to define the type of the

model first. For example, you may want to define use, make use of neural networks. Then of

course, you will have to define how many layers and you know like how many neurons and

what would be the input layer, what would be the output layer look like and so on so forth.

So, that is how you define first the machine learning model architecture.



You are going to of course, look at what could be the loss function optimizer and the metrics

for the evaluation, for a particular problem. Of course, accuracy can be one particular metric

that is simply to have F1 score could be another metric. So, you can you know of course,

make use of one or the other metric depending upon the specific requirements.

Then of course, you are going to do the training of the model on the training set that we have

split before. We are going to evaluate the model's performance on using the evaluate function

on the validation set. So, that you know it does not hamper the it does not affect the models

and introduce any bias in the model performance, ok. And then of course, you know

depending upon what the response we are getting, we are going to we can tweak the model

architecture.

For example, reduce the number of layers, increase the number of layers, reduce the number

of neurons, increase the number of neurons so on so forth. Of course, we may want to also

tweak the hyper parameters. For example, what could be the learning rate? Can we reduce the

learning rate? Can we increase the learning rate so on so forth. And of course, data set itself,

maybe you want to use the entire data set, you may want to use the another data set, you may

want to use multiple data sets.

So, all these are the questions that you will have to answer while tweaking the performance of

the model. And then at the end, you will have to re-tweak this 4 and 5 again and again and

again until you arrive to a satisfactory performance. Of course, what can we say a satisfactory

performance?

So, for example, if we are talking about a four class classification problem here, for our

emotionally intelligent virtual agent, a random chance of doing the classification or random

chance of identifying the emotion that is there in the audio is 25 percent right, four classes, 25

percent chance.

So, we would like to have you know at least 75 percent to begin with. And then of course,

ideally, we want to have as high performance as we can without having you know a lot of



variance in the performance. So, of course, these are certain you will have to look into the

model architecture to understand you know what how can it be achieved.

Once we have done the training and the testing, training and the validation of the entire thing,

then we may have a separate testing set where we can get an, this is important unbiased

estimate of the model's performance. So, then this is what we are going to report to the

external stakeholders. Once we have model training and testing done, we may want to save

the trained model. 

And when we say we want to save the trained model means model and its parameters. Of

course, using some save function, we will see a bit in a bit. And it turns out that whatever

model that we are saving; we have to register those models with some model registry. So,

basically without going into too much detail, the model registration is what? We want to

register the model and its metadata along with its performance into some repository.

So, that we can have a better control version control over it. And this is something that is an

essentially step sort of you know before doing the deployment of the model. And this is

something this register model registry allows you to track the different versions of the model.

And of course, you know if required, replace one version over the another depending upon

how it is performing in the real deployment. So, let us see how can let us see any skeleton

code which is going to do these 8 steps for us in short, ok.



(Refer Slide Time: 43:28)

So, just for the sake of the simplicity, let us say that we defined a neural network model

architecture with some you know like layers and with some this ReLU functions as an

activation softmax, exact details of course, you can look into the architecture of the neural

network.

Once we have defined it, then we are going to you know compile the model by defining what

is going to be the loss function, what is going to be the optimizer and what will be the my

matrix for the accuracy. You of course, the next is going to be you will be training the model

on the training data set. 

These are certain parameters that are required for doing the training of the model and then

you are also passing the validation data on which you want to tweak the hyper parameters of



the model. You are going to look at the validation evaluation of the model on the validation

set. 

You may have you may obtain certain accuracy. Once you have obtained the certain accuracy,

of course, this is you know the repetition of steps 4 and the 5 as we said before until we are

achieving a certain satisfactory performance. Once it is achieved, then of course, the next

thing is finally, you are going to report the test accuracy on the test set and then. 

So, ok like just to make it clear you know you may want to split your data into three different

sets training, testing and validation and usually for example, the simple thumb of rule is 70,

20, 10. So, basically you have 70 percent data for the training, 20 percent data for the testing,

10 percent data for the validation and or you may want to interchange one thing over the

other, right.

So, that is how you create three different sets from one given data, ok. So, now, and this is

basically you do all to you get an unbiased estimate and the details of it can be understood by

taking any machine learning course. So, once we have you know created a particular model.

So, basically this is what we are saying that our model is now ready here.

So, you may want to save the model to a certain path. So, basically you know like this is

where you are going to dump the model, we are actually saving the model with like the in

pickle format. And once you have dumped the model, then maybe you want to register the

model with a model registry. 

You may use any model registry. So, for example, this is your model registry, URI, there is

going to be some metadata that is associated with it such as you know what is the model

version, what is the accuracy of the model that you just obtained. And then these are certain

other parameters that you require to do the registry of the model onto in on some registry data,

right, ok.

So, then roughly this is what the skeleton code will look like for our emotional intelligent

virtual assistant. So, and now let us quickly go back. So, now where are we are where we are?



We already completed the prepared data; we already explored the features. So, we already

sort of you know clubbed the model building and the registry. Now, we want to look into a bit

in the deployment and of course, the monitoring can go further, ok. So, model and registration

is done for us ok, deployment.

(Refer Slide Time: 46:34)

So, of course, when we are talking about the final deployment, it can be done you know on a

particular hardware. Maybe you know like of course, you may you can keep it in a laptop

itself, you may want to keep it in a mobile phone itself or you may want to create a dedicated

tangible device for example, which you can place on your table or on the user's table.

So, assuming that you know like you decide for a sub-particular hardware, which could be for

example, as simple as that Raspberry Pi, you have to understand and take into account that it

should have sufficient processing power. We are talking about evaluate running some



machine learning models on it and it should have sufficient memory of course, and storage

RAM and the storage to run the model that we are trying to create.

Nevertheless, whatever model we are creating, having identified a particular architecture, we

may want to convert the entire model into a light format, which can be optimized and make

compatible with the chosen hardware. So, for example, in this case, we can simply make use

of the Tensor Lite framework, TensorFlow Lite framework to make it compatible with the

Raspberry Pi and TensorFlow that we have been using to develop the machine learning

model.

So, having chosen the light TensorFlow Lite framework, next what we want to do? We want

to optimize the entire model by converting it into a TensorFlow Lite format and maybe we

may have to you know quantize it to reduce its size and computational requirements,

depending upon you know whether for example, it is fitting to the hardware, whether it is

giving a real time performance and so on so forth. So, these are really tricky steps and you

will have to fine tune depending upon certain things.

Then of course, once you have done this thing, once you have converted into a TensorFlow

Lite format, you want to load that optimized model onto a raspberry Raspberry Pi. And then

you want to you know interface it with its Raspberry's microphone and of course, speaker.

Fortunately, Raspberry Pi has both the microphone and the speaker. So, it can work as

roughly as a good hardware for you.

So, of course, having loaded it onto the Raspberry Pi, next we may want to deploy the model

on the Raspberry Pi. And then we want to test it by you know running different audio inputs

and we want to understand whether for example, the output that it is giving, whether it is the

output that we wanted to have or comparing it with the ground truth in the real environment.

So, just a rough idea about how the development will look like. Of course, please pay

attention that we have been focusing solely now on the like on the emotions only.



More or less the similar kind of software development cycle can be followed for the intent

which I am not talking about because this is something that Alexa, Siri, Cortana has already

been doing. And other thing that we have not talked about is specifically is the context. 

So, context is something that also has been integrated to certain to certain with certain

proficiency efficiency in the these existing virtual models. But, so, we have not been talking

about the intent and the context, but more or less the idea is that the way we are going to

understand the emotions.

We are going to understand the intent and the context and we will be referring to the bigger

blog there. While generating a appropriate response we will be looking at the emotions, the

intent and the context all together. Roughly I wanted to give you a brief of how an end to end

deployment will look like.



(Refer Slide Time: 50:09)

So, just an skeleton code for this real time life deployment, again I am saying that this is just a

skeleton code. So, basically of course, you may want to check the Raspberry Pi that you are

for example, or any hardware that you are using for its power memory and storage. And once

you have this thing. So, you may want to optimize the model by using TensorFlow Lite.

So, just simply load the model. After loading the model, you simply convert the model, you

are going to convert, save the optimized model with some other name. And then you know of

course, then you are going to load this model onto the Raspberry Pi with some interpreter.

And then of course, the next is you may want to now run and test it on the new data that is

coming, right. Having trained, having model trained already on an existing data.

So, you may want to define a pre-processing audio. So, basically pre-processed audio function

you can use from the previous that we just, we already looked at a skeleton code, how can we



pre-process audio, normalization, re-sampling and all those things. Actions, we have a

function for that. We can define another function you know to make predictions using the

loaded model for a new data. Of course, simply we can, you know like we can collect the

audio.

We can do some pre-processing as required. And basically, this is where you know like we

are going to load the model, the optimized model and we are going to run the inference on the

optimized model. We are going to get the output in a Tensor format and then we are going to

you know convert into a some readable format or some interpretable format. And this is the

output of the predictive motion function will look like. Once we have the emotion output,

similarly you know like we have this predict emotion.

We can have the similar way, we can you know something like we can have another function

such as you know identify underscore, intent for example, which we already had for example.

Similarly, we can have something like you know identify or add something like context to it.

You know these kind of things we can have also. All together you know these three will come

together, these three functions will come together. And then what we can do? We can have a

prediction of the emotions.

Similarly, we can have a prediction of the identification of the intent, identification of the

context. And then accordingly you know rather than just returning the predicted emotion,

maybe we want to generate the appropriate response as we saw in the very first skeleton code.

And then that is what we are going to return and that is how we are going to simply finally,

test the model in the real time, right.

So, that is roughly and in a very very simplistic way the deployment of a model on a

particular hardware such as Raspberry Pi. I will be providing you these codes; hopefully you

will be able to go through these codes. These are just two examples, just the skeleton codes,

please feel free to tweak it as you wish and feel free to play with it. 



And hopefully I will be very happy to see if you are able to integrate all these pieces together

and come up with real and nice working emotionally intelligent virtual assistant for yourself

maybe, ok. So, with that then let us move to the next module.


