
Affective Computing
Dr. Abhinav Dhall

Department of Computer Science and Engineering
Indraprastha Institute of Information Technology, Delhi

Week - 06
Lecture - 20

Tutorial: on Emotion Recognition using Text

Hi everyone, I welcome you all in this Affective Computing Tutorial on Emotion Recognition

using Text. In this tutorial, we will work with a text data and try to see how to extract

emotions from the text information.

(Refer Slide Time: 00:39)

So, directly starting with the dataset, for this tutorial, we will be using this daily dialog

dataset, which is essentially a manually labelled multi-turn dialogue dataset. So, this dataset

contains basically 13,118 multi-turn dialogues and dialogues in this dataset reflect daily life



communications. So, one can easily download this dataset from this link and this data is

published under creative common license.

(Refer Slide Time: 01:09)

So, talking about the dataset file information, dataset will contain a couple of files. In these

files, we will be basically interested in dialog underscore text file, which essentially contains

these transcribed dialogues. And second file of our interest will be dialogue underscore

emotion dot text, which contains the emotion and rotation in the original dialogue underscore

text file.

Dialogue annotation will look something like number from 0 to 6, where number 0 will be

representing no emotion, number 1 will be representing anger, number 2 will represent

disgust, and 3 as a fear, 4 happiness, 5 sadness and 6 surprise.



(Refer Slide Time: 01:55)

Now, let me give you a very a brief overview of this tutorial. In this tutorial, we will be

performing following experiment on Google Colab. First, we will start with data preparation,

where we will be reading text file from Google Drive and we will be cleaning these text files

in terms of removing HTML tags, removing non-alphabetic characters, extra white space and

removing stop words. 

Later, we will be using these common feature extraction method from x data, namely, bag of

word, TF-IDF and Word2vec (Refer Time: 02:34) And after extracting these particular

features, we will be performing our emotion classification using machine learning classifiers.



(Refer Slide Time: 02:45)

The coding part, we will start with importing all the essential libraries and the code will look

something like this. After importing libraries, we will define our a data and our label path.

Code will look something like this. So, after defining our path variable, we will write the

code to read all the text files from our Google drive and save them into Python list. 

For that, I will write a function which will look something like this. So, you can simply pause

this video and try to iterate through each line in this code.



(Refer Slide Time: 03:44)

And now, we will simply call this function and our data will look something like this. So, we

got input data and corresponding labels over here. Maybe I can show you couple of data

instances also, so it will look. So, very first line in our data set is the kitchen stinks. Let me

show some other line, maybe the second line. So, second line saying, I will throw out the

garbage or maybe I can show some random line also that will line add position 67. May sit

here ok.

So, he is asking a question over here. So, these line belong to conversation and these line are

annotated by annotators into some emotion classes. So, I can show you the emotion classes

also. So, here you can see like each line belonging to some sort of a emotion class over here

like zero belong to neutral. So, after reading these text files, our first task will be to clean

these files. 



Most of this text might contain some sort of a noise in terms of punctuation marks, maybe

some sort of a hyperlinks. So, before our analysis, we will consider to remove all these sort of

a potential noises in our text data. For that, I will write a function and my function will look

something like this.

(Refer Slide Time: 05:56)

So, my function is clean text where I will be passing text into this function and it will be

trying to remove any sort of a HTML text, then it will remove any sort of a non-alphabetic

characters and it will remove any extra white spaces in the text. And in final iteration, it will

simply convert my text into lowercase and give it back. 

So, let me run this cleaning function on my whole data. So, my data is now clean, so maybe I

can show you couple of text instances and try to see the difference between original data and



the clean data. So, as we can see here, we have no extra spaces like this and our full stop sign

is also removed and all the text is in lower case. 

Maybe I will show you (Refer Time: 07:05) also. Here again, you can see like all the

punctuation marks are removed and all the text is in lowercase only. So, after performing

cleaning operation on our text data, we will start with feature extraction. So, our first feature

will be bag of word which we will be implementing using count vectorizer.

So, count vectorizer is basically a tool used in natural language processing to convert words

in a document into a numerical representation. And this numerical representation can be

easily understand by a machine learning algorithm. It basically counts the number of

occurrences of each word and create a table with count for each word in the document. And

this table can be used for various tasks are like as text classification, maybe sentiment

analysis, topic modelling. 

So, to perform our bag of word based feature representation here, we will be using intrinsic

function in a scalar library known as count vectorizer. So, you can see the code will look

something like this we will use this count vectorizer function and we are also passing

argument calls stop word equal to English. So, this argument basically will enable a count

vectorizer to remove all the possible stop word present in English language from our text.

And then after removing the stop word, we will make this BOG bag of word representations.

If you want to remove some particular sort of stop words, you can also pass a list of words in

this argument. So, as we can see count vectorizer has converted the text representation into

some particular vector representation and I can see here the dimension of that vector

representation.

Now, I can use this representation to learn our machine learning classifier. So, in this case, we

will be using, multinomial Naive-Bayes algorithm classify the particular emotional classes.

So, before that, we just need to divide our data into respective train and test set. For that, I



will be using basic train test split function from a scalar and let us say the test size is 33

percent. 

So, we have divided our data into respective train and test sets. Now, I will be using this

multinomial, Naive-Bayes classifier and try to see our classification results ok. So, here I can

see that we are getting a train score of 84 percent and a test score of 81 percent given that we

have a 6 class classification problem and the chance level will come around 16 percent., So,

84 percent train accuracy and 81 percent test accuracy is a good score here.

So, after using this count to vectorizer, maybe we can try another sort of feature

representation technique known as TF-IDF. So, TF-IDF is basically a; is basically a better

version of this count vectorizer. TF-IDF takes into account the importance of word in a

document by multiplying the word count by inverse document frequency.

So, what is this inverse document frequency? IDF is basically calculated as logarithm of ratio

of total number of documents to the number of documents containing the word. This way,

words that are frequent in a particular document, but rare in the corpus as a whole are given

more weight weightage. And this approach can help to better capture the meaning and

importance of word in a document.

And in general, TF-IDF is considered to be a more advanced and more effective techniques

than count vectorizer. So, to use this technique, I will be again using another function from a

sklearn library and our code will look something like this ok. Now, we have gotten those

TF-IDF representation over here.

So, we can try to train our classifier on these sort of features and try to see, do we get any sort

of improvement in term of our emotion classification accuracies. For this, I will again divide

my data into train and test splits with TF-IDF as a input over here. 



(Refer Slide Time: 12:02)

And I will be reusing my multinomial code and try to see, do I get any sort of better

performance here? So, in this case, we can see, we get slightly better test accuracy over here. I

will also like to see, this change in a classifier has any sort of effect in our performance.

So, for this, I will be using linear SVC, which is basically a support vector machine with

linear kernel. Here, we can see that we get slightly better train score, but test score is

somewhat similar. So, after count vectorizer and TF-IDF representations, we will move to our

third type of representation, which is called Word2Vec.

So, Word2Vec is a type of neural network model used for natural language processing. It was

developed by researchers at Google in back in 2013. And the purpose of Word2Vec is to



create words embedding, which are numerically representation of word that can be used in

machine learning models.

This model, I mean, this Word2Vec takes a large corpus of texts input and producer vector

for each word in the corpus. These vectors are designed to capture the semantic relationship

between the words. So, in our case, we will be using a pre-trained sort of Word2Vec model.

So, we will download this pre-trained model using Jensen API and the code will look

something like this. So, downloading this code may take a good amount of time because this

model will be a little bit larger model. So, please have some patience. So, after downloading

our model, we will write a function a name as prepare Word2Vec. 

So, this function will basically prepare training data consisting of vectors from Word2Vec

model and the code will look something like this. And after that, I will simply create my

Word2Vec representation by calling this function.



(Refer Slide Time: 14:40)

And this code also might take the little bit of time ok. Now, my Word2Vec representations

are created. I will simply use my train test split over these Word2Vec representations and

later I will simply learn my machine learning classifier. And the code will look something

like this.

Let us see how linear SVM classify our motion classes using these Word2Vec

representations. So, as we can see this Word2Vec representations give us a very nice code we

are using linear SVC. So, concluding this tutorial, in this tutorial, we explored a public

dataset for classifying different sort of emotions. 

We started with cleaning text data by removing HTML tags, non-alphabetic vectors and

extra-white spaces. Then we used our three different sort of feature extraction method, bag of



word, TF-IDF and Word2Vec and we used machine learning based classifier for classifying

these emotion classes.


