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Hi, everyone. My name is Gulshan Sharma. I am the TA for this NPTEL Affective

Computing Course. In this Tutorial, we will be working on Emotion Recognition using

Images.
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We will be using RAVDESS dataset which consists of 7,356 files divided into 8 emotion

classes which are calm, happiness, sadness, anger, fearful, surprise and disgust. For this

tutorial, we will be using video only data.
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So, this is the file name identifier. It consists of seven sub identifiers in which 3rd sub

identifiers tell us about the emotion class.
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So, let me give you the overview of this tutorial. We will start with extracting frames on the

video file in Python, then we will be extracting a HoG which is Histogram of oriented

Gradient feature from this images. And, we will try to classify these features using our

machine learning classifier like Gaussian Naïve Bayes, Linear Discriminant Analysis and

Support Vector Vision.

After that, we will be using VGG-16 architecture which will be pre-trained on VGG phase

dataset and we will try to classify these emotional images. Let me tell you this VGG about

this VGG face dataset. So, VGG face is a dataset of 2.6 million face images of 2622 people

that is used to train this VGG16 architecture. So, let us start with the coding part now.
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So, in our coding part, we will start with importing all the essential libraries that will be

required during the programming. After importing this library, I will start with data fetching

part and for this part, I am assuming that everyone has already downloaded the data and saved

in their respective Google drives. So, here I will create couple of variables which will be

essentially signifying the dataset path.

After creating these variables, I will be writing a code to extract frame from the video and

saving the frames into another directory. So, the code will look something like this. In this

code, we will simply iterate through all the video files available in our folder and we will read

each file using this cv2 library.

So, there is a function in our open cv library called video capture which will essentially

capture all the videos with respect to the input path. And later, we will simply extract the



frame out of this video and save it to another directory. This code might take a couple of

minutes to execute completely. So, please be patient. So, after completion of this code block,

frames are extracted from the video files and saved into another folder at this location.

Now, our next task will be to extract all the images from this particular folder and save them

into a separate numpy arrays. For that, we will writing another code. So, the code will look

something like this where we have defined our two list data all and label all list and we are

iterating through all of our files and we are simply reading those file names, extracting the

label out of those file and saving them into the and appending them into the label all list.

Later on, we are simply reading all these image files using our sk image library and saving

them into data all list. Let me run this code, ok. So, as we can see that we are getting these

873 files, 873 images whose dimension are 720 cross 1280 and three simply the number of

channels which represent here RGB images. Let me also convert the label all into what we

call it numpy array.
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So, for that, I will simply reuse my existing code, ok and we are getting 873 labels

corresponding to these files. Let me also join these two cells for a simplicity.
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After that, as now we have data all the data and their corresponding label. As we have already

seen there are 8 classes in this problem. So, just to save some computational time and make

this problem a little bit easier, we will try to make it a sort of a binary classification where we

will choose any two random classes. To do so, code will look something like this.

There will be clear to list data binary and label binary list and we will iterate through all the

labels, all our original labels. And if our label is equal to 1 or the label is equal to 5, in both of

these cases, we will simply append those label into our label binary list and all the data

corresponding to these labels will be appended into data binary list. Later, we will simply

transform these list into numpy array.

And, the shape of these array will look something like this. Now, as you can see that we are

having lesser number of images, which will help us to get some computational efficiency over



here. And remember, I am talking about computational efficiency, not about the model

efficiency or some sort of a training efficiency over here. This is just for the easier

demonstration.

Now, we will try another sort of a computational optimization here, like apart from using 720

cross 1280 image, which is a huge dimensional image, which is a huge image, we will try to

resize it into a smaller dimension, let us say 224 cross 224 image. So, for that, I will also

write another piece of code and the code will look something like this.

Here we are declaring a resized list called resized data, which will be storing over all the

resized data. And we will be using this sk image in built function called resize transformed

resize and we will pass the original data and the respective shape, which we have to resize.
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So, after running this code, no, as you can see after execution of this code, our new image size

is 224 cross 224. So, to visualize this data, I will be using another function from psychic

image library and this function is called io dot im show. And here I will simply pass some

image that have resized and image will look something like this; maybe I can use another

image say 89.

So, by now we have extracted all these images, and we have stored them into their respective

folders. And we have made this as a binary classification problem and resized our images.

Now, onwards, I will be, I will try to extract a histogram of gradients from these images and

we will train couple of classifier over that and learn how to classify this image into the

emotion classes. For that, so, to extract a HoG features, I will be again using an inbuilt

function from sk image library.
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And, this will look something like this, where I will be passing a resized image data and I will

be passing some sort of a hyper parameter into this block. These hyper parameter orientation,

which essentially represent the number of histogram bins. In original at HoG paper, they

mention this parameter value to 9. And we will be using same value over here.

And, another hyper parameter in HoG function is pixels per cell, which essentially represents

cell size for histogram and we will be using 8 x 8 pixel per cell. And our third hyper

parameter is cells per block, which represent block size for the histogram normalization. And,

after running this code, our image will look something like this.

Maybe I can zoom into a bit and as you can see, this HoG feature can represent the

boundaries of you know this face and so, basically, this is the HoG image generated from this

function and FD is the feature descriptors. Now, using FD we will try to classify the emotion

classes. But before that, I need to calculate these HoG image and features for all the data set.

So, the HoG code will look something like this. Here in this code, I have declared two list

name hog feature and hog images. So, what are we basically doing over here is we are

iterating through all the resized images and we are using this in built hog extractor and saving

these extracted images and features in these two list and later we are converting this list into

NumPy array.

So, let me run this code to this block, maybe I can show you the shape of this hog feature and

hog image.
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So, for that, I will simply write shape of these images and shape of hog features, ok. So, these

are respective shape of the features and these are the images over there. hog images over

there. Now, we do have extracted this hog feature over here. So, we are ready to play with our

machine learning classifier.

For that, I will start with dividing the data into their respective training and testing set. For

that, I will be using this in-built function from sk 11 and which is trained as split function and

the code will look something like this. Here we are taking test size equal to 0.010, which

essentially means 1o percent of the data will be taken as a S data. So, after execution of this

code.

So, after dividing this data into their respective training test set, we will be using our first

classifier, which will be Gaussian Naive Bayes. And the code will look something like this.



So, we have already imported this Gaussian Naive Bayes classifier and we are fitting it upon

the our trained data. And later we are simply showing our training data score and test data

score, ok.

So, as we can see that our training and test data, accuracies are for 41 percent and 48 percent

respectively, which is not so good. So, we will be using our another classifier called linear

discriminant analysis over here and the code will be similar. I will simply drag my code over

here and apart from a Gaussian Naive Bayes, I will be using linear discriminant analysis over

here and the rest the code is same.

And in this case, we got a slightly higher train score and test accuracy over here. Finally, I

will be using my linear score vector machine and whose code will look something like this.

So, in this case, as I can see, the linear SVC is giving similar score as our linear discriminant

analysis is giving. Let me try a same code with rbf kernel, ok.

Surprisingly, here we are also getting similar results using this hog feature. One more thing I

would like to tell you is the since here I am using those standard hyperparameter in our hog

feature extractor, one can try to experiment with changing the values of these hyperparameter

and try to see is there any sort of effect in the classification accuracy by changing these

particular values. That could be one exercise that you have to do on your own.

And, now I have done my VC classification part using HoG feature. Now, onward, I will be

using a standard VGG 16 architecture, new network architecture to classify these emotions.

And in this VGG 16 architecture, we will be using a pre-determined weights of VGG face

dataset consists of 2.6 million face images. 

So, the weight will be already pre-trained weights and using that model, pre-trained model

and pre-trained weight, I will try to classify these emotions. So, for this, I first need to

download the exact VGG 16 weight file.



(Refer Slide Time: 16:08)

So, let me first separate this section over here. Say yeah, I will download my VGG 16-weight

file and I will be using this particular link over here where these VGG face weights are

released and let me download it. It might take some time according to your internet speed.

Once it is downloaded, you can see this file over here.

So, it is in your local drive over here. Now, my weights are downloaded. I can simply use my

VGG 16 model and I will code the look something like this where I will be using my VGG

16-pre-defined model and I will be including these weights. This is the basic this is basically

the exact path of the weights and our input images like 224 cross 224 cross 3. So, after

running this code, I can see my model is there. So, I can simply try to see the structure of this

model.



So, to view the structure of this model, I will simply write a loop where my agenda is to see

the exact layer of the model. So, I will simply write, ok.
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We can see the these are the layers of this particular model and I can also show you like are

these layers trainable or not trainable. And, maybe I can also show you like are these layers

trainable or not. Let me check, ok. So, each of these layers are trainable. Since we will be

using a pre-trained model, pre-trained (Refer Time: 18:42) or in this VGG 16 model, I need to

turn off the trainability of the I mean layer.



(Refer Slide Time: 18:50)

So, to do so, I will write as simple loop where my agenda will be to turn off the trainability of

these layers. And here I will simply write layer dot trainable equal to false, ok. Let me try to

visualize are these layers turned off or not yeah. Now, you can see all of these layers are not

trainable.

So, what I exactly mean by this is when I will be fitting my model over my data. We would

not be training this layer. We will simply train a multi-layer perceptron, which I will be

appending after these layers. So, to code that part, I will be simply writing another piece of

code. 



I will be using this model of sequential method and I will define my multi-layer perceptron

model, which will essentially consist of two dense layers with ReLU activation function and

another layer with Softmax activation function, which is essentially used as a classifier.

So, remaining code will look something like this. We used model dot sequential, then we

added the model dot VGG over here. Later we added a flattened layer and we added our MLP

part over here, which is consists of 1024 dense neurons, 512 neurons and 2 neurons later with

Softmax for classification. Let me see how our model looks like. So, I will try to print a

summary over here and, ok.
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So, now our model will still consist of these vgg16 layers, these pretrained network over there

and a multi-layer perceptron over here ok. Now, my agenda will be to compile this model. I

will try to compile this model using categorical cross entropy loss and for optimizer, I will be



using Adam Optimizer and the learning rate will be set at 0.001 and the validation metric will

be accuracy.

So, ok, my model is compiled by now. Now, I just need to basically again define my training

test set over here. So, after successful, so, after successful compilation of the model, our

agenda will be to train this model, so, our agenda will be to fit this model. But, before fitting,

I just need to, you know, I just need to divide my data into respective train and test set.
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And, also sort of pre-processing over here where I will be converting my label 5 to level 0.

This is just a prefacing step over here and I will be converting these labels into categorical

labels as we are using categorical cross entropy function. So, let me run this code, ok. So, we

have successfully splitted our data into our respective train and test sets.



Now, our agenda will be to simply train this model, get this model. So, for this, I will be

using model underscore top dot fit and I will be passing my train data and corresponding

labels and for bed size, I am taking a bed size of 16 and number of epoch equal to 10. 

And this training part will also take a couple of minutes. So, please have some patience. So,

after training this model up to 10 epochs, we can see that our training accuracy is somewhat

around 57 percent. Now, let us try to check what will be our validation accuracy as in test

accuracy, which will be equivalent to ok 58 percent of the accuracy is over here. 

So, what I can include from here is these networks, although our neural network is working

comparatively better than our PC classifier, but still these networks are not trained up to its

potential. We might need to do a rigorous hyper parameter tuning in terms of learning rate,

loss function, optimizer, size of this particular MLP over here and maybe we can get a better

result than this. But, the agenda of this tutorial is to just give you a hands-on-experience to

how to code these classifiers.

Thank you.


