
Social Network Analysis
Prof. Tanmoy Chakraborty

Department of Computer Science and Engineering
Indraprastha Institute of Information Technology, Delhi

Chapter - 02
Lecture - 09
Lecture - 04

So far in this chapter on Network Measure, so we have discussed degree you know degree

distribution, we have also looked at different measures which are roughly divided into 3

buckets, right; microscopic, macroscopic and mesoscoping. We have seen metrics like

clustering coefficient, local clustering coefficient, global clustering coefficient, and connected

components, right; strongly connected components, weakly connected components.

So, here we will discuss another very interesting aspect of network measure, it is called

centrality. Now, this is widely used, right.

(Refer Slide Time: 01:03)

Centrality is basically a measure of how central a particular node is with respect to the

network, right. So, you can think of it, I mean if I say that you know to check whether a node

is central to a particular network, so the first thing that comes to our mind is whether the node

is node has equal distance to all the other nodes, right.

Say, if a node has equal distance to all the other nodes, more or less equal distance to all the

other nodes, you can say that you know that node is basically a central node. But we are not
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talking about that kind of centrality here, we are talking about. Of course, this is one aspect of

centrality, but there are other notions of centralities.

And remember the notion of centrality depends on the particular application. Say, if the

application is say outlier detection, you have different notion of centrality. If the application

is information spreading, you have another type of centrality. If the application is you know

vaccinate nodes, you have another type of centrality and so on and so forth.

So, in general when we talk about centrality I generally look at it you know using this 3 these

4 Ps, right. So, the first P is the prestige. We want to quantify prestige in the formulation of

centrality. We will try to quantify prominence in the formulation of centrality. We quantify

importance of a node in the formulation of centrality and then power, ok. So, these 4 Ps are

something that we will try to incorporate in the definition of a centrality, ok.

(Refer Slide Time: 02:46)

So, let us look at the first centrality, the basic one, the first centrality measure which is called

the degree centrality. So, we know what is degree? Degree is basically the number of edges

adjacent, number of edges which are incident on a particular node, right.

So, what is degree centrality? Degree centrality is essentially the degree of a node, but it is

normalized, right. So, degree centrality of a node v is the degree of the node v and divided by

the maximum degree of a node present in the graph, right. You see the max degree and that is

the denominator.
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So, for example, in this particular graph G 1, if you look at say node 1, the degree centrality

of node 1 would be 2 by the max degree is 3, right. So, the max degree is 3 or 4, right, the

max degree is 4. So, this would be 2 by 4, ok. Degree centrality of node 3 is 4 by 4 and so on

and so forth.

So, as you can understand it basically ranges between 0 to 1, and the more the degree

centrality the higher the case that, I mean the higher the likelihood that the node has the node

has maximum degree. And therefore, you know in certain applications for example, say you

want to identify prominent node or you want to identify celebrities for example, right.

And so, I mean in any application where you use degree as a measure, right, you can use

degree centrality. That is a very simple notion of a centrality.

(Refer Slide Time: 04:33)

The second one is called closeness centrality. Remember, all these central centrality measures

that we are talking about here, these are all node centric properties, but of course, you can

map it to its edge centric as well, right.

So, the next one is closeness centrality. So, as the name suggest we will look at how close a

particular node is with respect to other nodes in the graph and depending on that we define

this closeness centrality.

So, closeness centrality of a node v is basically, I mean you can basically say that let us look

at the shortest path distance, right of say distance of v from the remaining nodes u, where u

124



belongs to the vortex set V minus the v itself, right because we will not we will not measure

the distance of v with respect to itself.

So, with all the other nodes, what is the distance of v and you know you just normalize it in

some ways, right. If you do it, that is also ok. But the problem is that we also want that higher

the value of centrality better would be the node, right. Higher the value of closeness centrality

better would be the quality of the particular node.

Say, think of a node, right which is closer to all the other nodes. So, the sum of the distance

would be lower, compared to another node which is farther you know which is farther from

the other nodes, right. So, say let us say you have u and v, u is closer to all the remaining

nodes, so the distance would be the sum of the distance would be lower whereas, v is farther

from the other nodes, so the distance would be higher. Therefore, the closeness centrality

value, forget about the denominator, you can use any denominator, right. I will discuss.

So, irrespective of the denominator the closeness centrality value would be higher for node v,

because for node v the numerator value is higher, right. But that is not the desired output,

right. We basically want that node; the node which is closer to the other nodes should have

higher centrality values, right.

So, how can we then you know make to do some sort of tweaks here in this particular

formula? We actually reverse it, ok. So, closeness centrality is basically defined by the

fraction where the denominator would be the sum of distance, ok and the numerator would be

the normalizing factor.

So, in this case the normalizing factor is number of nodes minus 1, mod V minus 1. So, if you

do this, in that case, lower the distance lower the sum of distance higher the centrality value.

So, the node which is at the center at the center position of a network, which has lower

distance with the other with the remaining nodes that will have higher closeness centrality

value, ok. So, using the closeness centrality, we can essentially identify nodes which are

central to a particular network right.

What is the uses of this particular centrality measure? Now, think about it. So, I am basically

trying to identify a node which has small distance with the other nodes, right.
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So, it means that you know if I want to spread, say, for example, I want to spread up

information a particular information to the entire network, ok, I would basically identify a

node, right which has higher closeness centrality, right. If I identify that node and if I

convince that node to spread the information, it is highly likely that the information will

spread across the network faster than the case where the node has lower closeness centrality

values, ok.

So, in case of say viral marketing or say spread of information, so spread of fake news

misinformation, right in fact, spread of say any sort of epidemics, right. So, you basically I

mean from an adversarial point of view, think of it as an attacker you are an attacker, and you

want to attack the network by spreading the fake news piece information, you basically

choose nodes whose central whose closeness centrality value is maximum, and you basically

convince that nodes to spread misinformation, ok.

(Refer Slide Time: 09:35)

So, now let us move to the; so, I have already you know discussed I mean how to formulate

closeness centrality. Let us take an example. So, let us say we have G 1 as a graph, right and

let us look at the closeness centrality of node 1. So, node 1 if you look at the distance from 1

to 2 the distance is 1, from 1 to 3 the distance is 1, from remember we are interested in

shortest path distance, ok. We discussed what is shortest path distance in the last lecture.
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From 1 to 4 we have distance to this and this, right and from 1 to 5 we have distance 2, right.

So, the sum of the distance would be 6. Total number of nodes is 5. So, 5 minus 4 is 5 minus

1 would be 4, so 4 by 6 you have 0.67, right.

But what about 3? So, 3 has distance one to all the other nodes from 1, from 2, from 4, from

5, right. So, you see the denominator is 4 and the numerator is also 4, therefore, the closeness

centrality of node 3 is 1, right. So, you can also look at it manually that 3 is basically at the

center of the network, right, therefore, its closeness centrality is maximum.

So, if you want to spread certain information you basically need to convince node 3, and if

node 3 you know spreads some information or to its something, right immediately it is one of

neighbours will receive that information, ok.

(Refer Slide Time: 11:15)

Now, let us look at this third notion of centrality which is betweenness centrality. So, this is

very interesting. So, as the name suggest we will look at nodes for a particular node, we will

basically look at you know possible paths and see whether this that particular node is a part of

the paths, right.

So, let us try to quantify it. So, what we will do, we will take all pairs of nodes. There are

in-situ pairs we take all pairs of nodes and for every pair for every pair x, y for example, right

for every pair x, y we look at the shortest path. Now, remember there can be multiple shortest
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paths, right the value of the shortest path would be unique of course, but you will have you

can have multiple shortest paths.

So, for every pair x, y I will figure out the shortest paths and I will see whether the particular

node v for which I am measuring the between a centrality, whether node v is present in how

many of the shortest paths, right. Say, between x and y there are 5 shortest paths, and out of

these 5 shortest paths, there are 3 shortest paths where the node v exists. These 3 shortest

paths actually move through v, right and that would give you the quantity.

Now, we will do this for all pairs of shortest paths, right. So, let us assume that the sigma xy v

is the; so, let us first look at sigma xy. So, sigma xy is the number of shortest paths between x

and y, number of shortest paths between x and y. And I am interested in computing the

betweenness centrality for node v. So, out of all the shortest paths between x and y, right how

many shortest paths, in how many shortest paths this node v exists?

So, this sigma v xy indicates that out of all the shortest paths between x and y, how many

shortest in the how many shortest paths between x and y the node v exists, ok. And I basically

do this for all pairs, x comma y which is a part of V cross V for all pairs, ok.

Now, if now think about it. If a node has higher betweenness centrality, what does it mean? It

means that the node is present in almost all the shortest paths between pairs in the network,

right. So, whatever path you want to choose that particular node will always come, that

particular node will always you know be encountered. What does it mean? And where this

betweenness centrality would be useful?

So, think of, you know think of a vaccination drive, right. So, say an epidemic is going on

and you want to you want to stop the spread of epidemic, so and you want to vaccinate

certain nodes, ok. Now, think of a think of a network like this, right like this, ok.

Now, think of this node, and let us assume that the epidemic has been detected in this part of

the network, in this part of the network, right, and you and the epidemic has already been

detected. And you want that the epidemic will should not flow from this part of the network

to this part of the network.
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So, what would you do? You basically vaccinate this node because you know that this is the

junction point, and if you vaccinate this node, right it will the epidemic will not move from

this part of the network to this part of the network, ok.

So, if you compute the betweenness centrality of all the nodes in this particular graph, you

will see that the betweenness centrality is maximum for this junction node, which is very

obvious because when you take all pairs, right when you take one node from this component

and one node from this component, you will have to move through this particular node, right.

Now, this kind of node is also useful for identifying clusters, ok. Say for example, if you

identify nodes which has higher betweenness centrality or the highest betweenness centrality,

and if you remove that node, what would happen? You may see that the network would get

disconnected.

Say, for example, in this case if you remove this node the adjacent edges will also be

removed, right. So, you will see there are two you know disconnected components emerging.

So, this betweenness centrality concept is also useful for the purpose of attacking a network.

Say, you want to decentralize a network, now think of a terrorist network. So, let us think of a

terrorist network, where nodes are terrorist and links are relations between terrorists and you

identify a node which basically acts a bridge between two terrorist organizations, right.

If you break the node, if you say if you kill the terrorist or if you arrest the terrorist, what

would happen? The information that is flowing from one group to another group that will be

broken, that will be stopped, right. So, these are some of the some of the applications of

betweenness centrality.

Now, this node whose betweenness centrality is maximum, this is also called articulation

point. Now, this terminology is very very useful, right. So, articulation point is a node, whose

removal will disconnect a particular network, ok. It is not necessary that if you remove a node

it would disconnect the network, right. But let us say you have another edge like this, ok, so if

you disconnect this node nothing would happen, the network will still remain connected.

But at least what would happen is that your cluster would become prominent, ok meaning

that your inter cluster edges, so these are inter cluster edges, the inter cluster edges will be
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reduced and intra cluster edges will remains same. Therefore, clusters the clustering structure

will become prominent, ok.

So, and this is also useful for and this you know articulation points or the nodes with higher

betweenness centrality. These nodes are also very dangerous. Why? Because say for example,

you want to you want that some of the information should not you know should not move

from one component to another component, right.

So, and this these nodes would act as a spy, ok because this is the only node which connects

two different components in a network. So, you should be very careful you know from this

nodes. You should not you know, you may not want to share critical information with this

node. These are also called gatekeepers. Gatekeepers, articulation points, these are these

terminologies are used in you know different applications, right.

(Refer Slide Time: 19:07)

So, let us take an example. So, say this is G 1, and what we are doing here we are creating a

matrix, this is a matrix 5 cross 5 matrix, you have 5 nodes here 5 nodes here, right. And a cell

say x bar y, this is basically used to indicate that say.

So, what is y? y is the let us say let us say let us look at this component, ok, 0 slash 1. Means

that there are two shortest paths, between the there are one shortest path, between the, I mean

there is one shortest path between 1 and 2, and there is no shortest path between 1 and 2

where the particular node v exists.
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So, I want to compute the betweenness centrality for node v which is 3, in this case. There is

no shortest path between 1 and 2 where the node 3 exists. Let us look at it. So, between 1 and

2, you see that there is only one shortest path and 3 does not exist, right.

Let us look at this one, say between 2 and 4, between 2 and 4 you have this shortest path and

you have this shortest path, ok. So, among these two shortest paths. So, therefore, this is 2,

then the denominator is 2, and among these two shortest paths in this shortest path which is 2,

3, 4 the node 3 exists. So, therefore, the numerator is 1, right. So, the fraction is 1 by 2, right.

Similarly, we do the calculation for all pairs between 1 and 1, 1 and 2, 1 and 3 and so on and

so forth. And then what we do? We basically take the sum. So, in this case, 0 by 1 plus 0 by 1

plus 1 by 1 plus 1 by 2 plus 0 by 1, 0 by 1, sum of all the cells. And for node 3, it would be 4,

ok. So, this is betweenness centrality.

So, sometimes we mix up the concept of betweenness centrality and closeness centrality.

Think about it very carefully. These two metrics capture two different notions.

Closeness centrality captures how close you are with respect to other nodes whereas,

betweenness centrality indicates you know what is the what is the likelihood that whenever I

basically want to move from one node to another node you will be encountered, ok. So, you

cannot avoid the particular node in every shortest path distance calculation, ok. There are two

different notions. I hope you understand what I am trying to say, alright.

(Refer Slide Time: 22:01)
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So, now this betweenness centrality can also be computed for edges, right. So far we have

computed betweenness centrality for a node and you can easily extend it for edges because

straight forward, right. So, now, again you look at all shortest paths, all pairs of shortest paths

and see for a particular edge, how many times that edge exists, right in all pairs of shortest

paths and the calculation will remains same.

There is another notion called flow betweenness centrality, right. So, in betweenness

centrality, we are only looking at the shortest path shortest paths between two nodes.

Sometimes you may not be able to move through shortest paths because it may happen that

shortage paths are you know are congested in some ways, you may not be able to use the

shortest paths. You may want to use some other paths which may not be shortest path, but

you know slightly longer, but that would still you know fulfil your purpose.

So, in flow between a centrality instead of looking at the shortest path, I would actually look

at all possible paths between a node, right between a pair of nodes. So, all possible paths

between a pair of nodes is computationally expensive. Therefore, we generally do not

calculate flow betweenness centrality, but for certain applications, right we may want to

calculate flow betweenness centrality, ok.

(Refer Slide Time: 23:35)

Now, we are moving to a bit complicated centrality measure. So far we have looked at you

know simple measures like distance, shortest path distance and so on and so forth degree.

Now, we are moving to the to another notion which is called eigenvector centrality.
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And believe me or not this eigenvector centrality is something based on which a series of

centrality measures have been proposed, ok. So, what is eigenvector centrality? So,

eigenvector centrality says that you know when we measure the centrality of a node, you

would also look at the other nodes which are linked to the given node.

Say for example, so this is a network, right you see that node E is linked to many other nodes

in the network, ok. But node B is only linked to, ok node B is also linked to many other

nodes, but node C is only linked to B, ok. And the size of this of every node indicates the

prestige or centrality or eigenvector centrality.

You see that node B has maximum size followed by C, followed by E and so on and so forth,

right. So, what it is saying is that when we measure the centrality of a node, you also look at

other nodes which are actually pointing to this given node and you and you derive the

centrality of the given node based on the centralities of the other nodes.

And the idea is that if I am pointed by some of the highly prestigious nodes, my prestige will

automatically increase, ok. In other words, say on twitter, if I am followed by Shah Rukh

Khan, for example, Amitabh Bachchan automatically my follower count will increase, Does

not matter whether the other you know other users are following me or not. So, if I am

followed by some you know social media celebrities my prestige will automatically increase,

irrespective of whether others are following me or not.

On the other hand, if you think of another user who is followed by many users, but their

prestige is not that high, my prestige would not be that higher compared to the case where I

am followed by a celebrity for example, ok. And this is the this is a very important notion and

based on that a series of metrics I have been proposed. I will discuss a few in the later slides,

right.

So, essentially you see that you know the same the eigenvector centrality measure is a kind of

a recursive approach, right. So, I am measuring the, I am measuring the centrality of a node

based on the centrality of other nodes. So, I will measure the centrality of the other nodes

based on the centrality of their followers, alright, their neighbours and so on and so forth. So,

it is kind of a recursive definition, ok.
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(Refer Slide Time: 26:47)

So, now let us move to the definition, right. What it is saying is that a centrality of a node, the

eigenvector centrality of a node v is the sum of the eigenvector centrality of all its

neighbours. So, N v is the neighbours of v, set of neighbours of v and t is one of such

neighbour, so one of such neighbours. So, so x t is the eigenvector centrality of t. So, I am

taking the sum of eigenvector centrality of all the neighbours, right.

And I am actually using a some sort of normalization, say some sort of constant say this is

lambda 1, ok. So, this is the formula. Now, you can write it in a different manner you can say

that, ok 1 by lambda 1, sum of all the nodes present in V, how do I know that the t is a

neighbour of this V, right.

So, I can use the entry in the adjacency matrix. So, a v t, now think of it. So, a is the

adjacency matrix, ok and one such entry is small a v t, small a such sub v t. So, say this is v th

row and t th column. So, this would be either 1 or 0. If v and t are connected then it would be

1, otherwise 0, ok. So, this times x t. If this would be 0, then this will not be considered. If

this would be 1, then x t will be considered, right.

So, now, you can see that I can write it in the matrix form. I can say that this is. So, let me

you know adjust this equation in some other ways. I let me move this lambda 1 here, so it

would be x v lambda 1 equals to sum of, right a v t x t, right.
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Now, let us make it compact. Let us make it compact; let us. So, x v is the eigenvector

centrality of node v; x t is the eigenvector centrality of node t. Let us assume that I have a I

have a 1D matrix x, where we have elements x 0, x 1, x 2, dot dot dot x v, x t everything.

So, all these entries indicate eigenvector centralities of different nodes. And I have this

adjacency matrix A, right. So, can I write it in this manner? Right. Say lambda 1 X equals to

A X. So, this is basically a and this is X. So, you see this is the equation A X equals to

lambda 1 X.

And if you know matrix operation, right linear algebra you should have heard about

something called eigenvalues and eigenvectors, right. So, this is exactly eigenvalue

eigenvector formula, right equation. So, we know that this is the equation, right A X equals to

lambda X; this is the eigenvalue eigenvector equation, right.

So, if you do not know what is eigenvalue eigenvector, you go back and check, but roughly

what it is saying is that you know eigen; so, let me you know briefly talk about matrix

multiplication. I know this is not a linear algebra course, but let us briefly talk about it, right.

So, A is a matrix and X is a vector, ok. So, now, in a 2D space or a 3D space, right X is

basically an equation of say let us take a 2D, right something like this. So, you can think of X

as a as an equation of a of I mean as a data point here, as a vector here, right a 2D point. So,

when we multiply a vector with a matrix, what actually happens? It basically makes a linear

projection or linear transformation, ok.

So, it. So, when you multiply this by a matrix you get another vector say Y. So, Y is the linear

transformation of X, right and this transformation happens due to A, ok. Now, this linear

transformation. So, what actually this you know matrix indicate. So, if you think of this

columns of this matrix A, right these are basically different you know basis vectors in your

transform space. If you do not know what is basis vector please go back and check.

You basically you are transforming now, in a normal Euclidean space or coordinate geometry

we have two basis vectors i hat, right and j hat, right which is 1 0 and 0 1, these are two basis

vectors, right. Any vector can be generated based on this basis vectors.

135



So, when we multiply X with A, as if A matrix is transforming X to another space, right

where you have two you have two different basis vectors and these basis vectors are basically

the columns of A, ok.

So, during the transformation you will, I mean after the transformation you will get a

transformed vector Y. Now, what is special about this one? This is also transformation A X

equals to lambda X. So, you are multiplying X with A and the transformed vector itself is

basically X, the same vector. So, this is a special type of transformation, ok.

And what is lambda? Lambda is a constant, ok. So, lambda indicates whether you, whether

the transform vector is squeezed or expanded, right. If it is greater than 1 then you basically

expand it. If you if it is a fraction, right, so 0.1 or 0.3 whatever you basically squeeze it. It can

also be negative by the way, negative means you are changing the direction of the resultant

vector, ok. So, this is a special kind of matrix I mean linear transformation where the resultant

vector actually resides on the span of a of the vector itself.

Now, what is span? Again a span, again go back and check the term span, right, basis vector

these are very important concepts, right. So, I am not going into the details of eigenvector,

eigenvalue you know concepts. But what it basically does in this particular case you see that

essentially, X which is the eigenvector I mean the eigenvector, right of A, so this actually

captures all the eigenvector centralities, ok.

Now, you may have multiple eigenvectors, eigenvalues. There can be multiple such

transformation. There can be multiple such vectors which you which when you multiply with

A, the vector will remain same with some constants, constant lambda 1, lambda 2. So, which

eigenvector which eigenvector eigenvalue I should consider? So, this is called eigenvector,

this is eigenvalue, right.

So, it turned out that I should consider the principal eigenvector, I should consider the

principal eigenvector. What is principal eigenvector? Principal eigenvector is eigenvector

corresponding to the largest eigenvalue. So, you will have multiple such eigenvalues, lambda

1, lambda 2, lambda 3 dot dot, right. So, you choose the maximum eigenvalue and you take

the corresponding eigenvector, right.

Why so? Your question would be why we suddenly need to consider the principal

eigenvector. Because what I wanted to do is that I wanted to come up with a vector an
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eigenvector which is whose values are non-negative, right. I want to come up with a

eigenvector whose values are non-negative.

So, how do I guarantee that which eigenvalue I should consider, so that my eigenvector the

all the entries in the eigenvector should be non-negative? Right. There is a very nice you

know theorem called Perron Frobenius theorem, right which basically says that if you want to

identify an eigenvector whose all elements are non-negative, you should choose eigenvalue

which is the maximum, right.

So, therefore, I want to choose the principal eigenvector, right of A. What is A? A is the A is

the adjacency matrix. So, it is a very simple thing. Although, the idea is little bit complicated,

but I mean the formulation is very simple. I have the adjacency matrix. I will get the principal

eigenvector of the adjacency matrix. And each element in the principle eigenvector indicates

the eigenvector centrality of the corresponding node, ok.

So, again if you do not know what is how to calculate eigenvector, eigenvalues, go back and

look at some you know Fundamentals on Matrix Operation, ok.

So, I stop here. The next part of the lecture again that would be a continuation of this chapter.

I will discuss about other variations of eigenvector centrality. I will discuss about PageRank,

card centrality, and so on and so forth.

Thanks.
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