
Social Network Analysis
Prof. Tanmoy Chakraborty

Department of Computer Science and Engineering
Indraprastha Institute of Information Technology, Delhi

Chapter - 09
Lecture - 09

Hi everyone, let us now look at the last part of this chapter which is a Graph Neural Network.

(Refer Slide Time: 00:30)

So, far you know the methods that we have discussed right for example, node to wake, deep

work kind of methods, where we look at random work for embedding, we also have looked at

matrix actuation based approaches. So, all these approaches are kind of statistical approaches

in the sense like it basically tries to minimize or maximize some object objective function

without considering you know explicit neural network structure as such right.

So, now what we will discuss today is graph neural network where we will see how we can

incorporate the you know the vast amount of neural network architecture that have been

proposed so far for different other domains like computer vision, speech, right those domains

and how we can incorporate those for graph processing graph embedding.

So, neural network deep learning we all know you know the impact of deep learning in

today’s world you know I would say post 2010 2011 right era we have seen multiple such

cases where deep learning based approaches just outperformed statistical approaches in most

863



of the domains. And graph domain is also you know one such domain where you know deep

learning completely overshoot most of the traditional methods.

I am not going into the details of deep learning the key of this course, Shivani has already

talked about deep learning the foundation of deep learning in the previous lectures. I think

she has already talked about you know normal neural network, feed forward network, RNN,

CNN, attention, this kind of methods. Hope, you have a fair bit of ideas about this I am

assuming that you guys are aware of all these techniques at least briefly.

So, I will try to explain graph neural network again in a very abstract manner I will not go

into the details of every bit of this because if I go into the details of every bit of this part this

would this would take another course separately because the way this particular domain is

evolving right after 2017 2018 you know years. So, after that people have seen plenty of

methods where you know this kind of neural networks have been incorporated for graph

processing ok.

So, what is the fundamental ideas behind, I mean what is the fundamental idea behind graph

neural network? You basically have an image right and let us assume that you have an image

right and for image domain how we generally you know extract information extract features

we essentially use some sort of convolution operation.

We have fixed grid and that grid moves over the image and you basically get a condensed

representation of every grid right from every grid and then you basically squeeze the

representation and you keep on squeezing it and finally, you get you know some sort of

application right, you feed the that representation to the application.

So, now one may wonder that let us use GCN let us use convolution operation on graphs

right, but the problem in graphs is that unlike image right which basically uses a RGB kind of

you know matrices for representation or speech which is basically sequence sequential in

nature right, where you can quite easily do convolution operation because you have a fixed

structure and if you manipulate if you modify the grid for example.

If you modify the sequence you get a separate representation altogether right. So, your image

will change altogether, speech signal speech sequence will change altogether, but in our case

when you have an adjacency matrix and if you swap rows and columns we discussed earlier

864



if you swap rows and columns we basically rename nodes right. So, the network structure

will remain same, but the adjacency matrix will become now different right.

Now, on a different metrics if you do the same operation you may I mean you expect that you

get different output, but the graph structure remains same, right. So, you should not get

different output. So, that is the major concern here that is why traditionally the way we you

know use computational operation does not work in case of graphs right.

So, the rest of the part that we are going to discuss today, that part is highly motivated by

Euros Cubics course on machine learning for graphs as well as the beautiful the book right on

deep learning for ‘Deep Learning on Graphs’ by Jiliang Tang ok. So, if you are interested you

can also look at this book and the lecture series you get fair bit of ideas about graph learning

using neural network. So, in case of graph right how do we; how do we think of a

composition operation ok.

(Refer Slide Time: 06:18)

So, let us draw a picture here. So, let us assume that right. So, what a convolution operation

does? If you think of it carefully you have an image right, let us think of it in case of image

and you have this matrix right. Now, you have a kernel which keeps on moving right and

from each particular region right you get a representation right. What you basically do, you

do some convolution operation and you get a condensed representation of this part here right.

865



So, let us say you have an 8 cross 8 matrix here from 8 cross 8 matrix you possibly get a say

a 2 cross 2 matrix right. Now, the good part about image is that as I mentioned is the

reference point here is very clear. For example when you think of this region right you know

that the central point is this one this is the central point and with respect to the center point

you can think of a 2 by 2 cross 2 region right, but think of a graph right.

In case of graph how do you; how do you decide the central point, what do you mean by a

central point right and another point and another interesting feature in case of image is that

you know that this kernel right the dimension is always same right and it focuses on a 2 cross

2 region right and that region is very you know that region is fixed right.

But, in case of graph so, let us say you think of these as a central point you can think of these

as a central point, you can think of this as a region one of say egonet right, as a region. You

can also think of now if you assume this as a central node, you have 1 2 3 4 neighbors, what

about this one if you consider this as a central point, then you have these as a region right

where you have two nodes right you have two nodes in this case as neighbors in this region,

but here you have four nodes right as neighbors in the region.

Now, the region is not same what I mean to say in case of graphs the region is not same. So,

how can we you know tactfully use convolution operation here in case of graph we will

discuss this, but another point to ponder is that we also want that the topological structure as

well as the feature of nodes would also be preserved would also be considered while doing

neural network while running neural network right.

So, I mean one can think of you know one can think of a normal feed say forward network

where you have say a two layer network right like this a two layer network and you can say

that ok, let us think of the adjacency matrix here and say 1 2 3 4 n, 1 2 3 4 n you have rows

indicating you know neighbors, you have you can also add additional rows indicating features

right for each node and then you have a concatenated version of feature vector right.

This spot indicates neighbors and this part indicates features right and you can say that what I

can do, I can just feed this right in the neural network and let the neural network you know

produce some representation similarly you feed this to the neural network and let it produce

something and so on and so forth right. But this is a terrible idea, why this is a terrible idea?

866



The reason is that the reason is that first of all let us say you have a graph of 100 nodes right.

So, you have a neural network of 100 dimension right, now let us say you want to use the

same neural network for another graph right of size 50, now how can you use this one? You

cannot use it, because you have now 1000 or 100 nodes whatever right, how can you fill the

remaining part here, this is one problem and the second problem already mentioned this is

this should be; this should be order variant, but here this is order invariant right.

If you change the order what would happen is that if you swap nodes and columns tactfully

you may I mean you will end up getting the same graph, but the neural network will would

not be able to understand whether this is the same graph or different graph ok. So, how do we

tackle this problem?

(Refer Slide Time: 11:55)

So, in case of graph right, GCN graph convolutional network so, in a normal convolution

operation the CNN kind of you know tool when we use what are the two basic operations that

we do. So, one is the aggregation. So, we basically fix a particular region put a kernel

aggregate information from that region. And then non-linearity right we that aggregated

information is passed through a non-linearity and it produces something. So, here also we

will do the same thing in case of graphs right, but in a different manner.

So, what we do here, the neural network that we create right would be would basically driven

by the topological structure of the graph ok. Let us say; let us say you have a graph like this

867



say A B C D E F for every node we will first create something called computational graph

ok. Now, remember this computational graph would be different for different nodes ok.

Let us say; let us say we fix that the depth of the computational graph would be 2 right. So,

we will not move beyond second half right, now for node A; for node A so, node A will

basically receive information from B and C right if you look at; if you look at right it is

immediate neighbors. So, this is A, B and C if you now if you look at B, B is one of the

neighbors right would be A and C, C is one of neighbors would be A, D, E and B ok.

So, this is the 2 hop or 2 label computational graph for A right. Now, remember what we do

here, there is something called message passing setting right message passing. So, in a

normal message passing setting what we do, we basically pass messages from the neighbors

to the original node. So, say you have v and v’s neighbors. So, first you basically pass

messages from v’s neighbors to v, now v will then further pass that message to its neighbors

and so on and so forth right.

Similarly, here we use the same idea. So, message passing setting message passing paradigm

would be used for graph convolutional network. Now, so, this is the computational graph for

A, but the computational graph for let us say F right would be different, for F it would be E

then F D C this is more skewed right, similarly the computational graph for C B D other

nodes would be different.

Now, what we do once we create these computational graph right we will basically add a

convolutional block right here at every junction here, here, here, in this case here and here.

So, this is these are convolutional blocks right, what it does each of these computational

blocks what it does, it basically takes inputs from the corresponding nodes and aggregate it

right pass it to some non-linearity and then generate the output and the output will be passed

to the next layer right.

So, this is the idea, but remember; this computational graph would be different from different

nodes right therefore, I said that you know the neural network that we design. So, this is a the

this is a neural network of depth 2 neural network of depth 2. Now, K equals to 2 this depth is

an hyper parameter that we needed to set and now let us look at individual region let us look

at let us look at each of these blocks right what it does right.

868



So, it basically you know does the following. So, let us say this one right. So, it basically

aggregates information messages passing from A and C coming from A and C it first

aggregates right and then it basically passes it through pass it basically passes this aggregated

information through some weights again some neural network you can think of it as a one I

mean depth 1 neural network.

And it also aggregates its own information. So, message. So, every node has some message at

particular time I mean at particular iteration right. Let us say at; let us say at K equals to 2

this node has a message, this node has a message, this node also has a message right, this

node also has a message.

So, the updated message at K equals to 3 in this node would be a function of these two nodes;

these two nodes messages and the message that is there in this node ok. So, let me write what

I exactly meant to say. Now, this message is nothing but representation right. So, at every step

your representation is getting updated right.

So, representation denoted by each of a particular node v at a time K right would look like

this. So, you have some aggregated function, aggregation function let us assume that the

aggregation function is simple mean right. So, it would be summation of the representation

right all v’s neighbors v’s neighbors are A and C.

So, u which is a neighbor of phi right u K minus 1 right and how many such; how many such

this one how many such neighbors are there right. So, right this would be the mean right. So,

this is the main aggregation right of v’s neighbors right and you basically you have a

parameter W K with this.

And you have another information coming from this node which is h v K minus 1 right this

would also be parameterized B K. Now [FL] what is this? This is the message of this

particular node at K minus 1th time and you are planning to get the message for v at Kth time

ok. So, this is the aggregation ok, these are the two parameters that you learn these are

basically neural network parameters and then you pass it through a non-linearity sigmoid

kind of non-linearity right.

So, at every block at every such box it basically takes its neighbors aggregates and then it is

parameterized similarly you have your own message parameterized, aggregate them, pass it

through nonlinearity and get the output ok. So, this happens at every stage ok. So, this W and

869



B right these are the parameters that we need to learn think about it. So, think about it. Now

this W and B right it also depends on the depth K time K if there are two depths.

So, you will have W 1 B 1 for this depth and W 2 B 2 for this depth right and these are

trainable parameters. Remember, these parameters W and B these parameters are shared

across nodes these parameters are shared across nodes. W K the value of W K B K the same

value would be here and here because the dimension is same remember ultimately you are

aggregating. So, the dimension would be the dimension of the original message D after

aggregation is not concatenation aggregation.

So, the dimension will remain same ok. So, this is the idea. Now, a few points to mention

here, this is the hyper parameter that we set generally it is set to 2 it can be 3 also, but not

very I mean very high because if you keep if you make it very high then you exhaust with all

the nodes right with the entire graph which we do not want.

Secondly, this aggregation operation right should be this should be order invariant, in the

sense like if I make this as C and this as A the aggregated output will remain same right. It

should not be dependent on the order, sum is an order invariant aggregation function mean is

also an order invariant right mean, max, these are all order invariant operations right. So, you

can use all sorts of aggregation operation for I mean for here for this part right.

You may also wonder why do we need these two separate parameters why are you not just

adding this part here and dividing it by N v plus 1 right. This can also be done, but remember

the impact of my neighbors should always be different from impact of my own message right.

I want to keep these two things separate I always sometimes I want that my own message

would be of more importance than my neighbors message right, therefore, I would want to

give more weightage here and less weightage here right.

So, now, how do you initialize this neural network? So, I mean how do we initialize these

messages, what do you mean by message here? Message is basically I mean if you have a

feature right node feature you can initialize. So, this h is basically hidden state right, what

would be h v at 0? At the initial stage it would just be the feature of node v right.

So, you are basically passing the features from one hop to another hop right and this is the

idea and if you do not have features then you can just use some sort of node level information

like degree or clustering coefficient these information can also be used as a proxy of features

870



right. Or you just set everything as one right and you basically pass it and let the neural

network decide because ultimately it also depends on the topology right.

So, and, how do we train this model? There are two ways to train this model, first way is a

simple unsupervised way for example, node to wake, deep walk type ways we can train the

model. The second approach is more of a supervised approach let us say the task is node

classification right.

So, after this layer you can think of a classification layer right which will say whether it is say

fraud or genuine or whatever red and blue right and you have say a loss function right, you

basically take the derivative of this loss function and back propagate it right and you update

the representations ok.

So, this is the idea and this is the this is vanilla GCN, on top of this you can also add

additional constraints like the relations and so on and so forth and depending on that methods

like RGCN all these methods have been proposed you know in many literature and you can

also look at those things right. For example, RGCN and you can also consider edge types the

relations right particularly for knowledge graphs right.

And you can have embeddings I mean you can think of this neighbor as not a raw neighbor,

but neighbors are now dependent on the relations right and you can have this learnable

parameters which would be a function of the relation R right and so on and so forth. So, in

the next lecture we will discuss two other methods which is graph sage and another would be

graph of attention network.

Thank you.

871


