
Social Network Analysis
Prof. Shivani Kumar

Department of Computer Science and Engineering
Indraprastha Institute of Information Technology, Delhi

Chapter - 09
Lecture - 03

Hello everyone, welcome back to Social Network Analysis and the introduction to deep

learning. So, in the last few lectures, we saw the applications of deep learning, we saw the

neurons that are basically the building blocks of deep learning architecture. We saw the

perceptron, we saw feed forward networks and how to learn the weights and biases of that

network using the back propagation algorithm.

In today’s lecture, we will see two more architectures of the deep learning paradigm that as

basically the Convolutional Neural Networks or the CNNs and the Recurrent Neural

Networks or the RNNs. So, let us just get started.

(Refer Slide Time: 01:10)

So, first we will talk about convolutional neural networks. So, in the last lecture we saw

something called feed forward neural network which basically constitutes different

perceptrons in a hierarchical fashion right. But, in this structure, in this kind of architecture

the neighborhood information is not captured, that is each data point it is treated as an

independent point in the space which might be true for certain cases.

787



But say for example, in image classification task, we suppose we want to identify whether an

image contains a dog or not. Then, in order to do that we must be aware, we cannot look at

each pixel as a separate data entity. Since, the like a patch of the pixel, a collection of a pixel

will be constituting the say the dog for in this example.

So, we want to look at a particular set of pixel or a particular neighborhood of a pixel, in

order to identify or in order to achieve a task of identifying whether there is a dog in the

picture or not.

Now, this kind of task, this kind of neighborhood capturing that is not possible in the

traditional feed forward neural network. But, this kind of this kind of problem, it can be

handled by something known as a convolutional neural network. See, this convolutional

neural network it is able to capture the neighborhood information. We will see how this

capturing happens.

Now, another thing that is interesting to note here is that a traditional feed forward network is

not translation invariant. Now, what is translation invariant is basically say for instance in the

example, we just said that whether an image contains a dog or not. Now, an image they can

be like multiple images where in the first image the dog is present in the bottom left corner of

the image right. And, now it can happen that you flip the same image vertically and now the

dog is present in the bottom right corner of the image right.

Now, for these two image the output that we should get should be one, since the dog is

present in both of these image. However, if we use a normal feed forward network, it will it

might happen that the output for this and this image are different. Although, the two image

are completely same, but just the second image is the flipped version of the first image, but

still the it can happen the output can be different.

However, in the case of convolutional neural network, since we are using something known

as kernels and filters over the image, there is it cannot happen that the output of such an

instance is different. It if the network is trained properly, then for both the images the output

should be true, that is yes the network does the image does contain a dog. So, that is why we

say that Convolution Neural Network or CNNs, they are basically translation invariant.

788



(Refer Slide Time: 04:51)

Now, moving forward, let us first just see like just as the example we just said that whether

there is a dog in the image.

So, here is a very similar example that suppose we humans we want to identify whether there

is a flower in this image or not. In order to do that, what we will do is that we will basically

look at different segments of the images of this image right. And, we try to identify whether

there is a flower in each of these segment or not. And, if there is a flower in any one of the

segment, then we say that yes there is actually a flower present in this image.

(Refer Slide Time: 05:27)

789



So, we want to mimic this similar or same behavior in a neural network correct. Now, how to

do that? Now, for each of the segment that we have we want to apply some kind of filter over

it, that is some kind of; some kind of transformation over it. So, that we can know that based

on the output of this transformation or the based on the output of this filtered value that we

have whether this output represents the pattern of a flower or not.

So, basically for each of the different segments that we have divided our figure into, the

image into we apply a kind of filter over it right. We apply a kind of transformation over this

segment. So, for example, the first segment here we see this segment, we apply this filter over

it that is we multiply the values, the pixel values in this segment with say some real values,

some a matrix of a real value and which the matrix which basically let us say identify the

flower on a higher level.

So, we will go into the depth of this right now. But yeah so, basically it if it identifies the

matrix is made in such a way that identifies the flower whether the presence of a flower in the

image. Then, we want to multiply this matrix to in over all the segments of the images. For

example, this first segment here we multiply the matrix here and obtain some value here and

say like check whether this particular matrix represents a pattern of a flower or not.

Then, again we have the second value here, we take this segment and we use these values, we

calculate we have this filter over this particular segment, we multiply it. And, we see with the

resultant matrix that we get represents the pattern of a flower or not. Then, again we have

another segment here where we take this segment here, we multiply it with the with some

weights, some filters and check whether this the resultant values represents the pattern of a

flower or not.

Finally, we have another here where we multiply with the values, we have the filter and we

check whether the there is a flower or not. Now, if any of these values are yes, then we can

say that yes there is a flower in the image. Now, and how to do this? Now, this NNs here they

are not like the feed forward network.

So, we are talking about filters and transformations. So, if we are talking about that, then it is

necessary that we talk about convolution neural network. Since, these NNs here, these Neural

Networks here these are basically convolutional neural network.

790



(Refer Slide Time: 08:43)

So, a Convolutional Neural Network or a CNN, it is basically used for image processing task

like classification, segmentation and so on. And, this kind of a neural network it works on a

2D kind of an input and it this network is made up of convolution layers. Now, what is a

convolution layer? Now, basically a convolution layer is when you slide a kernel over the

input. So, a kernel is basically a 2D matrix which acts as a filter in order to identify the

different patterns in the image right.

So, for example, suppose we have a grayscale image with some kind of a values of the

grayscale pixel right. So, we have a matrix here, where let us say that if like we have some

values here let us say that if the background is grey, we are getting a value of say 0. If it is

white, we are getting a value of minus 1 and if it is black we are getting a value of 1. Then,

we have some values here 1 1 0 0 minus 1 1 and 1 0 0 0 and so on.

And, what we do is we create a kernel or a filter of size 3 cross 3, now this image we saw it is

of size 4 5 6, it is of size 6 cross 5 and what we do is we create a filter of 3 cross 3 here, such

that it identifies edges. So, we have 1 1 1 in here, we say that; we say that we want to identify

such pixels in our original image such that the right and the left side of that pixel is basically

white. And ok so, for suppose 0 represents white and minus 1 represents grey and 1

represents black right.

So, the right and left is basically white and in the middle we have the black pixels. So, this

might, this kind of filter might help us identify the edges in the figure right. So, if we are to

791



multiply this kind of filter over here so, we have 1 1 1 1 and 0 0 0 0 0 0 here right. So, now,

what we will do is we will take this filter and suppose we put this filter over this part here and

we multiply. So, now, we do point wise multiplication. So, now, we will have the output as 0

0 0 1 0 0 and 0 0 0 right.

Now, based on this output like we will be getting we will slide this filter one at a time over

here. So, for this second part, if we are to put this filter over this part then for this part the

output will be something like 0 0 0 1 1 1 0 0 0 correct. Now, similarly we will have some

values for like if we slide the filter one more to the right, will be we will have like this part to

consider.

And, then we will slide the filter one to the bottom to like one step down, then we will have

then we will have this part to consider right. Then again to the right, again to the right and

then again to the bottom of it right. So, we will have some values for each of these filter

mappings that we have correct. Now, we can perform something known as pooling in order to

get one single value out of this filtered value.

So, here suppose we are doing just max pooling that we have that is we are trying to find out

the maximum value of the resultant output. So, we have here 1 and or say in order to find the

edges I think it would be better to do like summation kind of pooling. So, here the output is 1

that is we are just summing all of these and here it is 3, that we are summing all of these.

So, we can say that yeah this the higher the value, the denser the region is that is the more

edges it represent, that is more there are more 1s in the middle column right. So, basically in

a convolutional neural networks, we are trying to do this only. We are trying to create some

kernels or some filters that we slide over the image in such a way; so, that different patterns

are being identified and captured from different regions of the image.

So, for instance as we talked about the translation invariant things, even if the dog is present

at the bottom left or the bottom right corner; whenever the filter that is a that is constructed to

identify a dog is being is being like is passing over these pixel values, it will be giving us the

same value even if the dog is present on the left or on the right. So, yeah so, this is how

convolution network work with the help of these filters in order to identify different patterns.

792



(Refer Slide Time: 14:50)

So, but we cannot like in the case as we saw in the feed forward neural network case, we

cannot have a filter or we cannot have a single perceptron in the case of feed forward. And, in

the case of convolution network, we cannot have a single filter which is able to identify

complex objects like dog or flowers in this case. So, since the flower can be of multiple type,

it can be of different types.

So, all of these figures they contain flowers, but each of the flowers there are of different

kinds. It can be roses, it can be a sunflower, it can be a daisy. So, we must identify some basic

patterns of a flower instead of identifying like complete flower in the image. So, what we

might do, what we might want is to have multiple filters or multiple kernels passing over the

image; so, that different attributes of the image is being captured.

For example, here we have multiple kernels to identify different patterns. Here, we have like

maybe one kernel is used to identify petals in the image, one kernel is used to identify the

sepals in the image and another is used to identify the leaves.

And, when we have these multiple kernels here, multiple convolution layers we will have

multiple representations from the single input image which helps us to identify the different

patterns in the image. And finally, these patterns will be used to identify whether the image

contains the desired object or not, if it is an object classification task right.

793



(Refer Slide Time: 16:37)

Now, how does as we already saw, but like let us just see again how does this convolution

works. So, suppose the this blue matrix, it represents the image, the different pixels of a

image, the different values of the pixel of a image. So, we have here like a 5 cross 5 image

and this green represents the filter. So, we have a 3 cross 3 filter here which we are applying

over this image.

(Refer Slide Time: 17:14)

Now, suppose when we do a point wise multiplication of this filter with the image; we are the

result is this table right, this matrix that we have. So, now, what we want to do is in order to

794



get a single value out of this feature map, basically this resultant matrix from the filter, we

can perform pooling. So, we can either for max pooling, min pooling, average pooling, sum

pooling.

So, here we just perform max pooling and just capture the maximum value, that we have in

the matrix which is 5 in our case. So, this particular value will give us the value 5 and this

value 5 will be a part of our final feature map that is here right. So, this is like the result that

we are getting after passing the filter over the whole image. So, we put the value 5 here.

(Refer Slide Time: 18:11)

Then, we move forward, we slide this filter over the like one step to the right. So, that we can

identify a similar pattern over this part of the image, if the pattern is there or not. We again do

point wise multiplication, perform pooling and get the output and place it in the feature map

at the appropriate position. So, this second position is also filled now which is basically the

values that we get from this part of the image, the green highlighted part of the image.

Moving further, we move this filter again to the right and try to identify the pattern whether it

is present in this part of the image or not and again do pooling and fill our filter map and so

on, happens for the complete image right. So, if we move further then this filter will move to

this part right, this part and then this part will be will capture this part of the feature map.

Then, the filter will move to further right and it will move on to this part which capture which

will capture this part of the filter map. Then, again it will move on to one step down, it will

795



come to this part, will it will capture this part of the feature map and so on. So, all of this

feature map will be filled with the filtered value of the filters that we pass on the image right.

So, this is basically how on an theoretical and intuitive level, the convolution neural network

works that is we are given the input as a 2D we are given a 2D input which can be an image.

And, we have some filters or some kernels which identify different patterns in the input and

based on these patterns, it generates a feature map of the input.

(Refer Slide Time: 20:15)

And, this feature map can then be further used to get more to being like we can apply

different kernels or different filters over the over these feature maps or we can also just pass

this feature map to a feed forward layer in order to perform a downstream task, say object

classification.

Now, we are talking about like higher level object identification for example, like flowers,

but as mentioned different features map feature map can learn different things. For example,

in this like if you want to identify where is the hand of the robot, it can learn different things

like edges and it one feature map can like maybe these feature map are represent a learning,

where are the grey edges, where are the brown edges and so on.

And, the next feature map are basically trying to understand where are the fingers, if there is

arm near it and so on. And, then higher based on the higher level of patterns that we are

trying to identify the higher layers of the network will be able to identify such patterns right.

796



So, yeah so, this was for the convolutional neural network, it was a very brief overview, very

broad overview of the structure of the architecture. And, in order to understand the maths and

the nitty-gritties behind it, then you must go over some of the very interesting blogs and

research papers that are present in this domain right.

(Refer Slide Time: 21:57)

So, now, while convolution neural networks are they have proven effective for say image

manipulation task, what happens if we are to like if the given input is basically is basically a

sequential input; that is the input at a time step t depends upon the input at time step t minus 1

or time step t minus 2. Then, this convolution neural network might not prove beneficial;

since it captures the local neighborhood of the input.

That is, if we are to provide a filter of size 3 cross 3, then it will then the convolutional layer

will just capture the neighborhood of the dimension 3 cross 3 and not the global

neighborhood of the whole input right. And, moreover the input length that the CNN require

is of fixed size, since the convolution filter and the input it should be of like a matching size.

So, that the filter can be applied to the whole input right.

So, now what we want to do is that we want to do two things, actually you want to do three

things. First is that we want to handle sequential input, that is we want that we want to

capture the time dependency between the inputs. Secondly, we want to capture the global

context or the global neighborhood of a particular input and we want to handle an input

797



which might not be of fixed length which can be of different lengths. In order to do that, we

will see something known as recurrent neural networks.

(Refer Slide Time: 23:55)

So, basically a Recurrent Neural Network or RNN, it these kind of networks they are used for

sequential data. They have a concept of something called as memory, that is they are able to

remember what kind of inputs they have seen and then use that information in order to get the

output for the next input right. So, they have the concept of something called as memory.

These inputs, these network they can handle inputs of varying length. Since, we I will get to it

why it can handle and the learning that happens in these architecture, it is based on an

algorithm known as back propagation through time. So, back propagation we already know

and since it is a sequential data of the transformation in this kind of data is happening over

time. So, here the algorithm is something known as back propagation through time.

But, we will not go into the depth of this algorithm and I will leave it to you guys to go into

go and study this algorithm in detail. But, in this lecture we will just have an overview of how

the RNN works. So, RNN can be thought of like a simple feed forward network, but it has a

feedback loop that is if we just look at this left hand side of this particular slide.

We have this input x t which is being processed by this unit A which calculates like the which

processes the input and calculates the hidden states and the activation functions over it just as

we did in the feed forward network. And, then the output of this layer is being again passed

798



on to the same layer and we also have something called as hidden state, we will see. So, this

whole network, it can be unfolded in this fashion as can be seen at the right hand side.

So, it is easier to understand if we unfold this architecture. So, suppose at time step 0, we are

passing the input x 0 to this whole architecture. And, this input x 0 it is being processed by

this unit A and whatever the whatever information, it is learning at this time step it is being

captured in the hidden state h 0. It is which can be passed on as an output as well as it is

passed on to the next timestamp, where the input x 1 of the onetime stamp comes into play.

Then, this input is again passed on to the same unit A, that is the weights here of all these A

are same because it is the same unit. It is just an unfolded way so, that we can better

understand it, but the unit A is the same. So, here this x 1 is passed on this unit A and it also

has some information from the previous time stamp, that is x 0, we have this h 0 here as well.

So, based on these two information that this A is getting, this some modification will take

place here, some processing will take place here.

And, it will result in the h 1 which can be directly considered as one of the outputs or can be

passed on as a hidden state to the next timestamp right. This is how; this is how this whole

RNN network looks like. But, you might be wondering what these inputs and outputs can be

right. So, sequential data, the best example of sequential data is basically you know it is

basically like a text right. So, for text if we are; if we are to read a text.

So, for example, if we are to read this last line that is learning back propagation through time.

So, now, when we are on the word time here, we must not consider this word as standalone or

independent. We must consider these three words that are preceding this word time so, that

we can understand that what is the context the word time is present in order to understand the

whole concept of the statement right.

So, this kind of sequential data where a particular word at a particular time stamp depends on

the previous words, on the previous time stamp or the previous like a particular input for a

particular time stamp depends on the previous time stamp inputs; this kind of data is handled

by recurrent neural networks. So, now, this neural network, this RNN can be of different

types based on the number of inputs and outputs that we have.

799



(Refer Slide Time: 29:12)

So, for example, the first one can be one to one, that is it is basically normal feed forward

network; we have one input and we want to produce a single output. So, for example, we

have like an image classification task. We are given an image or not any image classification

task, but a single data point classification task.

So, we had given a data point and we have to identify whether it will whether it is a positive

data point and negative data point. Then, we can use simple feed forward network which is

basically a one to one RNN.

(Refer Slide Time: 29:46)

800



Then, we have one to many RNN that is the input is a single object, but we are to generate an

output with multiple elements. For example, a task can be of image captioning. So, an image

is our single input, but we want to generate a caption such that the word that is present at t 1

time step depends on the word that is being generated at the t 0th time stamp right.

So, in order for the caption to be coherent, each word at the tth time step that is being

generated must be aware of all the word that are already being generated from the t 0 to t

minus 1th time stamp correct. So, in such a scenario, we can use a one to many kind of a

structure.

(Refer Slide Time: 30:33)

Moving forward, we also have a many to one kind of a structure which is can which can be

used for instance for an emotion classification type of an for a task, that is we have like

suppose we are given a text or a tweet and we want to classify this tweet into one of the

emotion. So, we are given a tweet as a sequence of words and we want to class we pass these

we pass these tweet into say this RNN.

And, we are given a single output here, where we just identify the label of the emotion that is

present in the tweet. So, this kind of a structure where the input contains multiple words in a

sequence and we are to get just one output, this is known as a many to one structure.

801



(Refer Slide Time: 31:31)

Then, we have a many to many structure which where the input can be multiple words, if we

are considering text and the output can also be multiple words. So, the one such instance can

be machine translation, where we have multiple words like multiple English words, maybe as

the input and multiple Hindi words as the output right.

Then, we can also have POS tagging, any other tagging and any many to many kind of in

paradigm, that can be that such a network or many to many kind of RNN can be used in these

type of problem statements.

(Refer Slide Time: 32:07)

802



Now, although we will not go into the detail of the different type of architectures of this

RNN, but we have some specialized architecture for RNN where called as a LSTM or GRU

where. So, LSTM is short for long short Long Short Memory. And, here what we have is that

we have multiple gates where a new information is being learned or stored and maybe the

another kind of information the like the useless information it is being forgotten.

And, new essential information is being added to our knowledge base and then it is

performing some kind of some kind of processing based on these different gates. Similarly,

we have this GRU that is the Gate Recurrent Unit and we have another set of gates which

perform in a different set of manner. And, these LSTMs and GRUs they are basically some

different type of architectures of recurrent neural network which can be applied to different

application based on the based on the type of output and the input, that we have right.

(Refer Slide Time: 33:29)

Now, we come to something known as attention. Now, we saw that in RNNs or in recurrent

neural network, we want to capture context right. But, here the context is although the context

being is being captured, but it is not being captured efficiently or we can say that all of the

context that is present in our network is being given equal importance. But, it might happen

then some part of the context is more important than some other part.

For instance, if we look at this statement, these two statements that the first statement is the

animal did not cross the road because it was too tired versus the other statement is the animal

did not cross the street because it was flooded. So, we see that in the first statement, since the

803



last two words are too tired, we know that this particular word it refers to the animal; since

the animal can be tired not the road whereas, if we see the next statement, then the word

flooded is there in the statement.

So, the this word it, it corresponds to the word street and not animal here because animal

cannot be flooded and street is flooded. But, if we are to use a normal RNN without any kind

of attention or any kind of weight over it, then each of the words present in the context that is

animal, cross, street will be given equal importance in order to when we are trying to get the

representation of other word it.

But, we want the weight of the importance to be in such a way that animal is given more

important in the first instance and street is given more important in the second instance. So,

this is basically captured by this concept called attention.

(Refer Slide Time: 35:34)

So, basically in the first case where the statement is the animal did not cross the street

because it was too tired; we know that here since it is too tired here then the it refers to

animal more right. This it refers to animals. So, computationally we can capture this by

giving more weight to the term animal and less weight to the rest of the words right. So, this

weighting is actually done by the attention mechanism that we have.

804



(Refer Slide Time: 36:07)

So, and in the second scenario, the animal did not cross the street because it was flooded. We

know since we have flooded here, then it the word it should refer more to the word street here

right. So, this kind of waiting it is done by this module of attention that we have. So, again

not going into the mathematics of it just the intuition behind it. So, basically attention is

something that is used to give weights to our context, that is how much attention we want to

give to the different words that are present in the context.

(Refer Slide Time: 36:44)

805



So, how can we use this attention mechanism? So, suppose we have a many to one

architecture, let us say a sentiment classifier where we are given a tweet as the input and we

want to classify the sentiment of it right; whether it is positive or negative.

(Refer Slide Time: 37:09)

Now, instead of just performing a normal RNN architecture, that is shown in this figure; we

can actually have an attention block in between, that is we pass our input to an RNN and we

get some outputs from this RNN.

(Refer Slide Time: 37:19)

806



And, these outputs are then passed on to this attention block so, that we can identify how

much weight do we have to give to each output in order to determine the sentiment class for

the input right. So, for instance if the input is I love food, now here in order to determine the

sentiment of the statement which we humans can immediately tell, that it is a positive

sentiment, since it contains the word love.

Now, in for the compute to understand this, the attention mechanism what it will do is that it

will give more weightage to the term love here. And, based on this more weightage here, it

can identify the polarity of the sentence more efficiently right. It can identify that if it is a

positive tweet, because it contains the word love.

(Refer Slide Time: 38:26)

So, we saw like in all these different lectures over deep learning, we saw we like we got

introduced to the to deep learning as a paradigm. Then, we saw the perceptron and how we

can use it, you know multilayer perceptron fashion in a feed forward network. We saw the

back propagation algorithm which is actually used to learn the different weights and biases of

the feed forward network.

Then, we saw the convolutional neural network which are which is basically used in an like

in a 2D kind of an input task like images and all. Then, we saw RNNs which are used for

sequential tasks. And, lastly we got acquainted ourselves by the concept of attention which

basically captures the different weights that we are to give to the input in order to capture the

context in a in an completely efficient manner.

807



(Refer Slide Time: 39:21)

So, these are some various references that you must see. So, these are the just the blogs, apart

from these blogs one must also go through all the research papers that introduce these

concepts the first time. And, then if you want to learn more about these concepts in a simpler

or a overview kind of manner, then one can look at these blogs which are actually used to

create these slides. So, that was all for the deep learning introduction of this social network

analysis class.

Thank you.

808


