
Social Network Analysis
Prof. Tanmoy Chakraborty

Department of Computer Science and Engineering
Indraprastha Institute of Information Technology, Delhi

Chapter - 06
Lecture - 05

Ok. So we are almost at the end of this chapter on link prediction and today we will discuss a

beautiful algorithm called supervised random walk and supervised random walk algorithm

although it was proposed in 2011, but this is you know by far one of the method that people

use extensively for link prediction, and the beauty about this method the unique point about

this method is that it actually you know captures the topological structure of a network as

well as the meta information of nodes and edges ok.

So, so far the methods that we have you know discussed we have observed that mostly we

look at the topological structure right, we look at you know whether they are connected in 2

hops, 3 hops whether they have common neighbors and how these neighbors are distributed

we look at you know we basically try to understand, try to unfold the underlying hierarchical

structure of a network and so on.

But, this was to the best of my knowledge this was the first algorithm which combined the

idea of you know random walk based methods for link prediction and how you know one can

use the meta information node level information, edge level information right into the random

walk process for link prediction ok.

572



(Refer Slide Time: 01:51)

So, and this method was proposed by Jure Leskovec and his team in 2011 2012 right during

that time.

So, what is random walk? We all know what is random walk basically we a random walker

starts from a particular node and the walker essentially you know chooses one of the outgoing

nodes uniformly at random and then you know follows the particular follows that edge and

then basically moves to the next node right. So, you know by default random walk is random

because you know we are not making it bias.

But in this particular algorithm it they suggested that you know how we can make the

algorithm how can we make the random work process biased ok, and what do you mean by

bias. So, I actually you know when this random walk process will go on we would essentially

we would insist the random walker to move through those paths right which we want them to

move right. So, we already fix a preference and we allow the random worker to basically

follow most of the times follow those paths ok.

So, a random walk based method which essentially combines node level as well as edge level

attributes along with the network topology. This is the unique selling point of supervised

random walk and then it basically predicts and ranks you know all possible links which are

which are going to form ok. So, the use of positive and negative samples to assign a score

right or edge strength to each edge. So, what it would do, we will discuss it would you know

over time it would assign a strength of an edge or strength of a node pair ok.

573



Now, the strength of a of an edge I mean one may say that ok the strength of an edge can

easily be; easily be obtained from the weight right the weight of an edge right, but most of the

networks are random weighted right. So, we will see how we can use node attributes and

edge attributes to measure the strength of a node pair. The node pair can have an edge right in

between them or a node pair may not have edge.

But we can; predict the strength of these two; these two nodes ok and remember the score

that we are going to compute this edge strength this is a parametric this is a parametric

function ok. This is parameterized by w I mean a set of parameters which we will discuss

therefore, and these parameters will be learned over time ok. So, if this is not cleared this

moment just hold on we will discuss elaborately in the subsequent slides.

So, the score this edge strength score this basically dictates the random walker to visit certain

edges more often than the others ok therefore, I mentioned that this is basically a biased

random walk we bias the random walk process.

So, that the worker essentially moves through those edges which have high edge strength ok

and then we use some sort of supervised learning paradigm to learn these weights and we will

see that how eventually we would be able to and when we learn this weight right naturally we

can measure the strength of a node pair now if we measure the strength of a node pair we can

easily identify those node pairs which have high strength and essentially you can say that

look possibly these two node pairs, these types of node pairs with high strength they would

form edges in the near future ok.

So, it is biased random walk. So, that it visits positive samples more often than the negative

samples what do you mean by positive samples.

So, positive samples are those nodes which are already connected to a given node say for

example, you are standing on a particular node and you know that this node u is connected to

w v x right, but it is not connected to a b c for example. So, for the random walk the this you

know. So, u w x v w x these nodes are basically positive nodes and other nodes are negative

nodes ok. So, we bias the random walk to move to basically walk to the to move to the

positive nodes more often than the negative nodes.

574



And, then we essentially over this over the iterations we essentially follow the PageRank kind

of process and we will see that we get a stationary distribution and that stationary distribution

will basically help you identify nodes which are highly likely to be connected ok.

(Refer Slide Time: 07:33)

So, let us look at the in a formal definition of supervised random walk. So, you are given a

graph G V comma E and you are also given a set of nodes set of positive nodes.

Now, the set of positive nodes are those which are connected ok you can also say that the set

of positive nodes are those which you prefer to visit ok. So, D is a set of positive nodes

divided by d 1 d 2 dot dot d m and L is the set of negative nodes which are not connected of

course, this set would be much much higher than the positive node, but that is ok right. And

we basically learn you know this kind of function this is basically function called psi.

Now, psi x y psi sub x y is a combination of node level and edge level attributes for a node

pair x and y ok. Say for example, x and y they are 2 users ok. So, x has say attributes like age,

gender, job, location y also has the same attributes. So, since let us say x and y are not

connected right. So, we can come up with the function psi which takes into account the

attributes of x and y and produces a value a real value and this real value is this real value

indicates the strength of the pair of nodes ok.

And, we will see that the output of this ok will then be passed through a function f which is

parameterized by w or omega whatever right. So, this w will be learned over time ok. So,

575



then based on that we compute the a strength. So, we basically have three things here the first

one is this function psi which combines the node features, I mean the features of two nodes

right and produces something produces a number for example, or a vector right and then that

is passed through this function f ok.

Let us say let us say the attributes the attributes of x is 2, 1, 0, 2 and attributes of y is 1, 0, 1, 1

right. Now, the psi function can simply be the dot product let us say right dot plot will

basically produce a scalar number. So, this dot product value will be passed through this

function f. Now, f is a f is a parametric function right say let us say let us say it is not a dot

product it is just a you know element wise multiplication. So, 2 times 1, 2 one times 0, 0 0

times 1 0 and 2 times 1, 2 ok.

So, the output of this psi function is essentially a vector 2 0 2 right and say you have this

attribute you have this function f which has four parameters w 1, w 2, w 3, w 4 and

essentially let us say the simple way to combine this thing is f of f w is w 1 x 1 plus w 2 x 2

plus w 3 x 3 plus w 4 x 4. So, in our case this would be w 1 2 plus w 2 0 plus w 3 0 plus w 4

2.

So, it will produce a scalar number right and this is your a u v right. So, a u v. So, a u v is

essentially you know kind of a edge strength you would say edge strength or whatever a pair

I mean strength of a pair of nodes ok then. So, then what you do what we do? We compute a

transition matrix now remember whenever we do random walk process, we need some

transition matrix the transition matrix can be the adjacency metric itself or it can be computed

in different ways.

So, in our case it basically is computed in a different manner ok. So, this Q dash is what. Q

dash is a u v divided by sum of a u w for all w such as u and w are connected belongs to this

edge set E right. So, what does it mean? It means that say this is u ok these are different w s

you got a u v a u w and so on and so forth. Now, you basically normalize it. So, that it

becomes a stochastic matrix right the sum should be 1.

So, that when we do this PageRank process right you get a transition matrix and it converges

ok. So, this Q matrix Q dash right. Q dash is a matrix right n cross n matrix and this is the

stochastic transition matrix remember Q and A, A is a adjacent the matrix they are different

right, because here Q is exhaustive in the sense that you are measuring this Q dash u v right

for all pairs of nodes whereas, A I mean what I mean to say is that if you look at Q dash you

576



will see cells most of the cells are non zero whereas, in case of A, A is a adjacency matrix

and you know its parts.

Therefore most of the cells will be 0 ok.

(Refer Slide Time: 14:22)

Now, what you do. So, from the stochastic matrix, from the stochastic transition matrix you

get the actual transition matrix right, and remember what we do here we use something called

random walk with restart, and we have already discussed what is random walk with restart in

the chapter on link analysis right. So, the idea behind random walk with restart is that you

start from a node u right.

And you follow one of its outgoing edges right uniformly at random move there right. Now,

from this node you either move you either chose you either choose one of the outgoing edges

or you jump to the original node again. So, with certain probability you choose one of the

outgoing edges and with the remaining one 1 minus that probability you then jump to the

previous node seed node right. So, this is random walk with restart.

So, you see in random walk with restart there are two components. The first component is the

one that we already derived which is Q dash, it is a stochastic matrix and using stochastic

matrix you do the random walk process. Remember in the normal random walk with restart

we use adjacency matrix for this you know all this deciding whether to jump or not or which

577



edge to follow, but here the random work process is happening on this Q dash adjacency

matrix or Q dash whatever transition matrix right.

So, you basically have all pairs of nodes and all pairs of nodes are virtually connected with

some edge strengths and you decide based on the edge strength value ok. So, in other words

we are computing the entire thing the entire process on a modified graph right. This modified

graph is basically generated based on this Q dash ok where nodes are connected nodes are

virtually connected and the connected the connection strength is derived by the a strength that

we discussed ok.

So, this part is the random jump part sorry, but this part is the part I mean based on which you

basically choose one of the outgoing edges and this is alpha. So, alpha 1 alpha is damping

factor right in case of PageRank we discussed ok, and this is alpha times one it means that

you are only allowed to move to the source node jump to the source node ok. So, this is now

the adjacency matrix or whatever transition matrix final transition matrix ok.

Now, if you only consider this part then this is a pure random walk random walk on the

adjacency on the modified transition matrix, but since you add this part also it is a random

walk with restart ok. And what is the expectation? So, when we start the random walk. So,

say P is the distribution. So, you start with all uniform distribution right and then over times

you multiply P with Q whatever Q transpose or Q does not matter, you multiply P with Q,

this is the Q ok.

And, you keep on multiplying this thing when you see the stationary distribution meaning

that after multiplying right you would see a certain stage, you would basically reach a certain

stage where even after multiplication you get the same P right and that is the that is called

stationary distribution. So, at the end of the day you would have a P right which would give

you the stationary distribution and you would have probability associated with every node

right.

So, the size of this vector is n right. So, if you unfold it what you are doing you are

essentially doing this thing you are multiplying i mean say this is u ok and these are the nodes

which are pointing to you. So, essentially you are multiplying you are taking the summation

of all its neighbors; all its neighbors prestige right in our case prestige is basically P right and

what are the neighbors how do we know which are the neighbors you will get it from Q ok.

578



So, for every node you are calculating this one. If you write it in a matrix form you are

basically multiplying P times P and Q ok. So, now. So, I mean once we reach the stationary

distribution you are done ok. So, we. So, far we have not explicitly understood the relation

between w P Q all these things right. So, let me now derive this thing in a different manner I

hope you understood the entire concept.

(Refer Slide Time: 20:29)

Now, I am defining it a different manner ok. So, what is the idea? The idea is that I do this I

repeat this random walk with restart right and the expectation is that, the expectation is that

the PageRank value of the positive nodes should be higher than the PageRank values of the

negative nodes ok. D set of positive nodes and L set of negative nodes ok.

So, what is our optimization function here? The optimization function is we minimize w with

respect to w right, and w is a parameter such that p l less than p d for all; for all l d where l

belongs to L and d belongs to D.

So, let me explain. So, we want that our random walk process would produce a rank list or a

PageRank value such that all the negative nodes would have lower PageRank values

compared to the positive nodes ok and w is the parameter. So, the entire thing is remember.

So, how do you calculate p? So, we calculate p based on Q, I am actually you know moving

backwards right. So, I get. So, I will obtain p, p is dependent on Q, Q is dependent on f and f

is a function f is a function of w. So, ultimately p is also dependent on w right.

579



So, we minimize it why you minimize it because of the because we want that you know we

prefer shortest you know smaller value of w right, smaller parameter values just for

regularization ok, because if we make it high then you may end up overfitting or whatever. I

mean you may explicitly extensively give more weight as to some features which are not that

important. So, this is the this is the objective function and let us denote this by F w right.

But this is actually hard this is hard constraint right. If you know SVM support vector

machine right, you will understand what do you mean by hard. It is hard because it is very

difficult to guarantee that for every pair of l d, l and d this will satisfy ok. So, the way we use,

the way we calculate you know soft margin in case of SVM right we do the same thing here.

So, we define a loss function. So, this h is a loss function ok.

And I mean what does it do. It basically says that whenever now for every pair for every l d

pair whenever I see that p l is greater than p d right. I will penalize you see here if p l is

greater than p d this would be positive and this will this part will positively contribute, but we

minimize it. So, that is bad ok. If pl is less than pd then it is ok because it is negative and we

want to minimize that is ok.

So, this is a loss function and we will discuss what kind of loss function they have used in

their paper, and lambda is a regularizer ok which basically gives a weight between this part

and this part ok.

(Refer Slide Time: 25:03)

580



So, now, how to solve it? It is a standard optimization function although it is not convex, but

you can still use gradient descent to get the values right. Take gradient descent I am not going

the details of the this mathematical part.

But you take gradient descents and you essentially would be able to update the values over

different times this is not a convex function, you what you can do you can start from different

seed nodes and you try to approximate it ok.

(Refer Slide Time: 25:37)

So, now, let us look at some of the components right the I mean the first component was this

h x the loss function. So, the loss function in their paper they used a simple squared loss

function which is this one ok or you can do even complicated loss functions like this or this

one right.

So, this h was unknown, now this kind of h functions that I mean you can use in the

optimization right.

581



(Refer Slide Time: 26:09)

So, the other one which was missing is this f w right. How does this f function look like? So,

in their paper they used two types of functions, one is the this exponent based function right

where, it is simply e to the power w times right phi u v ok, or you can do you can take some

sort of logistic function 1 by 1 plus e to the power this one ok.

So, that is all. Now, let me go back again and recap what we have discussed. So, first we have

this adjacency matrix we separate out the positive samples and negative samples. Positive

samples are those, which are those nodes which are connected; negative samples are those

which are not connected, then we compute this psi function right. Psi can be any function it

can; combine right, then we have this f the f is a parameterized function right, f can be f can

be this or this from there we get a u v.

So, a u v is not normalized. So, from a we will get A dash or Q dash whatever. So, Q dash is

the stochastic transition matrix from Q dash we will get Q. Q is the final transition matrix

which combines two factors the stochastic part whether you jump through one of the one of

the through one of the outgoing edges, and the second component was the jump random

jump. Combine them you get the actual transition matrix Q and then you repeat the PageRank

right that is the process.

So, you see how you can utilize the node level attributes, edge level attributes as well as the

topological structure in a nice manner right. The problem in supervised random walk is that it

is time taking because you have to do this random walk with restart kind of process for every

582



nodes and you have to take all pairs. Although you can do some sort of you can take negative

sampling and so on and so forth to squeeze the sample space, but still you need to do a lot of

you basically need to do random walk restart for every node from every node right.

So, that is time taking, therefore it is not scalable the crude version of it, the you know the

paper which was published in 2011-12 that paper was not scalable for a massive network, but

then people actually took this thing forward try to make it scalable and so on and so forth ok.

So, so this brings us to the end of this chapter. So, we have discussed you know one of the

important applications of social network analysis called link prediction.

We have discussed heuristic based approaches. We have discussed you know maximum

likelihood kind of approaches (Refer Time: 29:39) based approaches, we also discussed we

have discussed the supervised approach to deal with link prediction problem. We also

discussed matrix which we generally use for evaluating you know link prediction methods

ok.

So, we stop here in the next chapter we will discuss you know another important application

which is cascade right cascade growth prediction information diffusion and so on.

Thank you.

583


