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(Refer Slide Time: 00:14)

We have seen different variants of GANs over the last couple of lectures. We will now move on

to another important notion in Generative Models, which is called Disentanglement. This notion

is more closely associated with Variational Auto Encoders VAEs, and we will also discuss why

this is so as part of this lecture.
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To start with, what is Disentanglement? Disentanglement is about isolating sources of variation

in observational data. If you had an image of a Big Red Apple, can you separate the generative

factors for such images as corresponding to size, big, color, red and shape or object apple? Can

we enforce Deep Learning Models, Deep Generative Models, in particular, to isolate these

factors while learning such a model? Why do we need such an approach?

If we could disentangle the generative factors, it allows us to generate new images that may not

be in an observed dataset. Suppose your training dataset had images of small black grapes and

big red apples. Can we generate an image corresponding to a small black apple? You may not

find such an image in a real-world dataset.

But using a deep generative model can hypothesize how this would look by setting the color to a

particular value, setting the size to a particular value and the object to a particular value. You

would be able to do this reliably only if the latent variables in your generative model isolate

these components of images.
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Here is an example of face images. In this case, the latent variables could correspond to gender,

age, hair, and perhaps race so on and so forth. So if we knew which latent variable corresponded

to gender, one could manipulate that latent variable alone to generate different images of

different variations going from, say, female to the male gender, as you can see in the example

here.

(Refer Slide Time: 03:12)
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Why Variational Auto Encoders? You perhaps know the reason already. We probably already

used the word latent multiple times. In GANs, generative adversarial networks, the latents are

not learned per se. The latent vector is a noise from a Gaussian. In a Variational Auto Encoder,

the latent variables are learned. If one could now ensure that those latent variables are

disentangled, you may have a lot of control over what kind of images you can generate out of the

VAE. So recall the VAE overall architecture and formulation.

So you have your input data x, the encoder provides the mean and variance of an approximate

posterior, which over learning tries to become close to a pre-assumed prior. Then a vector is

sampled from the prior. The decoder reconstructs the data from that sample vector. These latent

variables could be a vector of multiple dimensions. If they are disentangled, you can generate

more control data.

VAE-GAN frameworks, such as Adversarial Auto Encoders, can benefit from disentangling this

latent variable in a VAE.

(Refer Slide Time: 04:56)

The first work that brought this notion to the community’s attention and developed a method to

allow disentanglement was -VAE. Their work was published in ICLR 2017. It is primarily aβ

variant of VAE itself. Let us see what kind of a variant. If you recall the variational autoencoder

1512



loss, there are two terms in your evidence lower bound, one term which minimizes the negative

log-likelihood.

In other words, it maximizes the log-likelihood of generating that kind of data that is in the

training set. The second part minimizes the KL-divergence between the approximate posterior

and the true posterior. It breaks down into two terms which we finally use while training the

VAE.

We finally use only the KL divergence between and the prior after applying the𝑞
Φ

(𝑧 | 𝑥) 𝑝
θ
(𝑧)

evidence lower bound. This is the correct KL to start. But this gets simplified to the KL that is

written on the right side.

Now, this entire objective can be written in a slightly different manner. We can say that we would

like to maximize the log-likelihood of generating x from z. Subject to the constraint that the

approximate posterior and , the prior on z. The KL divergence between these two𝑞
Φ

𝑝
θ
(𝑧)

quantities is as small as possible. We say that the KL divergence should be less than some

positive constant delta.

This is another way of writing out the same objective. You can say now that we are maximizing

the probability of generating the real data while keeping the distance between real and

approximate posterior distributions small, which boils down using the evidence lower bound to

keeping the distance between the approximate posterior and the prior small. How does this help?
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Now, keeping this optimization problem in mind, we can write it as a Lagrangian. With the

Lagrangian multiplier using the KKT conditions. This is very similar to how one would write out

the support vector machine objective. So this would turn out to be maximizing the log-likelihood

and minimizing the constraint term that we had. This constraint term, when we have a

Lagrangian, would turn out to be .𝐷
𝐾𝐿

− δ

And that would then go to the numerator, and you would have a Lagrangian multiplier , usingβ

the standard Lagrangian approach to optimization. So here, we write the first term as it is the
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objective function minus , which is the Lagrangian multiplier into the constraint, which isβ

KL-divergence between approximate posterior and prior minus . If you expand this, the firstδ

term stays as it is, the second term becomes minus into the KL. When we say KL, we meanβ

KL-divergence plus .β * δ

Since both and are quantities that are greater than or equal to 0, that is how we define them.β δ

So you are left with saying that this quantity will be greater than or equal to the log-likelihood

minus the KL-divergence. We are writing this is as a maximization problem. When we do

minimization, the sign will change.

(Refer Slide Time: 09:37)

One can now write the -VAE loss to minimize, minus log-likelihood, or negative log-likelihoodβ

plus beta times the KL-divergence between approximate posterior and prior. It almost seems like

nothing changed from a standard VAE which is partly true. In this case, when is equal to 1, youβ

would have the standard VAE. However, when is made greater than 1, it introduces strongerβ

disentanglement in the generative model. Why is the so?

Between these two terms used to train a VAE, the first term recall, the goal is to improve the

reconstruction capability of the decoder. It is the second term that tries to learn the latents of the

variational autoencoder. So by giving it a stronger weight, we are trying to make the latents be
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learned better in a more disentangled way. The only problem now is this could limit the

representation capacity of z, thus causing reconstruction problems in the entire VAE.

(Refer Slide Time: 11:05)

That brings us to another question which almost looks like a tradeoff between disentanglement

and reconstruction capability. By increasing in a -VAE, we get better disentanglement, but theβ β

training procedure now thinks that the second term is more important.

(Refer Slide Time: 11:28)
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In this case, the second term is more important and the first term is slightly less important. So, if

the first term is slightly less important, this leads to lesser reconstruction performance.

(Refer Slide Time: 11:49)

So to address this issue, to be able to get good reconstruction and good disentanglement, there

was another method introduced in NeurlPS 2018 by Chen et al., -TCVAE. Let us try toβ

understand this time. So the -TCVAE looks at the KL-divergence term between theβ

approximate posterior and prior and then decomposes it into two parts. How is this

decomposition done? This decomposition is done by looking at the term, the approximate

posterior , which could also be written as .𝑞
Φ

(𝑧 | 𝑥) 𝑞
Φ

(𝑧 | 𝑥
𝑛
)

Now assume that you have a set of data points going from, say 1 to N, and each is one data𝑥
𝑖

point where comes from 1 to N. So that is the that we are talking about is each of the data𝑖 𝑥
𝑖

points. This is the same just expansion of writing the approximate posterior. So by standard

probability, we can now write this as the joint probability, by the probability on ,𝑞
Φ

(𝑧 ,  𝑥
𝑛
) 𝑥

𝑛

. Assuming all data points are equally likely, the denominator here would be , which is𝑝(𝑥
𝑛
) 1/𝑁

a constant.

So, you could now say that we could replace the approximate posterior with the joint probability

between the latent and each data point . This means that the KL-divergence between the𝑥
𝑛
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approximate posterior and the prior can be broken down into two parts. It can also be written as

KL between , the joint, with respect to the prior on z. The first term here, can be𝑞
Φ

(𝑧 ,  𝑥
𝑛
) 𝑞

Φ

broken down into two parts.

The first term would be the KL-divergence between the marginal on z with respect to the

approximate prior, and the second term would be a KL-divergence between the joint distribution

and the product of the marginals . This is given by the mutual information𝑞
Φ

(𝑧, 𝑥
𝑛
) 𝑞(𝑧) * 𝑝(𝑥

𝑛
)

between z and n; n denotes the indices of the data points on x. Note that mutual information is

defined as a constant factor of a KL-divergence between the joint distribution between two

random variables and the product of its marginals. Now how does this decomposition help?

(Refer Slide Time: 15:13)

Once we have this decomposition, one notice is that the second term is the marginal KL; we will

call that marginal KL because the approximate posterior has now been marginalized. Earlier, we

had , but that got marginalized. The other term now came into the mutual information.𝑞
Φ

(𝑧 | 𝑥)

This marginal KL is the component responsible for disentanglement.

Hence, trying to penalize the mutual information may lead to poorer reconstruction. Keeping this

in mind, we now want to ensure that we focus on the marginal KL while learning a VAE; that is

the term that we want to weigh with a beta.
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Before we do that, we will do one more thing: decompose the marginal KL divergence even

further. The marginal KL divergence can be decomposed into a term that looks at the KL

divergence between z, the random variable, and the product of the marginals of each dimension

of z. This term is known as Total Correlation. Although the name is a misnomer, Total

Correlation is a concept from Information Theory which is a generalization of mutual

information to multiple random variables.

If you add two random variables and that we saw on the previous slide, you look at the joint𝑧 𝑛

and the product of the marginals of the two random variables and take the KL divergence. In

total correlation, we do this for all the random variables involved in z in this particular context.

Those random variables for us are the different dimensions of the z. The second term here is the

dimension-wise KL-divergence and the sum of all of them.

So we have broken the overall KL divergence of z into dimension-wise quantities. Why is that

important? Because in disentanglement, we would like each dimension to have a unique

existence.
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Now, suppose you look at this decomposition. In that case, one notices that total correlation is

perhaps most important for disentangled representations. That term is responsible for looking at

each dimension of z to the overall z. This leads us to the final loss for the -TCVAE, whichβ

simply puts together all the components that we have seen so far, the negative log-likelihood, the

mutual information, the total correlation, and the dimension-wise KL, which are the different

components we have seen.

What is different? Notice, is only on total correlation and not on any other terms in the overallβ

objective.
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This allows us to focus on disentanglement only on that term and not affect the reconstructionβ

capabilities of the VAE.

(Refer Slide Time: 18:47)

Having seen -VAE and -TCVAE, one question that arises now is how do you evaluate whetherβ β

your generative model has learned to disentangle effectively? While one way is to generate

different images and check qualitatively whether those images represent different generative

factors, that can become a tedious exercise for many generative factors. One such metric that has
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been proposed in recent years is known as the Mutual information Gap (MIG). The idea is to use

the mutual information between generative factors, g and latent dimensions, z in some way.

What do we mean by generative factors? These are factors that we know exist in the dataset. If

we say, big red apple, size, color, and object represent the generative factors. The idea is to see if

the latent dimensions z that are learned capture these generative factors somehow. We would like

to use the mutual information between the random variables g and the latent dimensions z to

capture this.

How do we do this? We compute the mutual information between each generator factor, and𝑔
𝑖

each latent dimension, . You would then have an entire matrix of mutual information between𝑧
𝑖

every pair, and , and , and , so on and so forth. What do we do with all of these𝑔
1

𝑧
1

𝑔
1

𝑧
2

𝑔
2

𝑧
1

mutual information values? For each generator factor consider the latent factors that have the𝑔
𝑖

top two mutual information values. Let us call them and .𝑧
𝑗

𝑧
𝑙

Once we have this, we define the mutual information gap as the difference in the mutual

information values between these top two latent factors. So, the mutual information of with𝑔
𝑖

𝑧
𝑗

and with , will be the mutual information gap with some normalization factor on the outside.𝑔
𝑖

𝑧
𝑙

What is the normalization factor? , the entropy of intrinsically, i.e., entropy is1/𝐻(𝑔
𝑖
) 𝑔

𝑖

of that generative factor.− ∑ 𝑝 𝑙𝑜𝑔𝑝

And this normalization takes care of averaging this across all of the generative factors. So

averaging by and normalizing by H, entropy, provides us values between 0 and 1. If the mutual𝐾

information gap is zero, both these latent factors have high mutual information with the same

generative factor. It would be considered a bad disentanglement because both those latents are

learning the same thing. They are not disentangled.

On the other hand, when MIG is 1, it is good disentanglement. One question here is why do we

use the mutual information gap and not just mutual information itself? Think about it. It is
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homework for you. If you need to understand this better, read the paper “Isolating Sources of

Disentanglement”, NeurIPS 2018 paper, which defined this metric.
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Another metric for checking disentanglement that has been recently proposed in ICLR 2018 is

known as the DCI Metric. DCI stands for Disentanglement, Completeness and Informativeness.

There is a quantity defined for each of these. To compute them, let us first train any model, say

Beta-VAE, to learn latent representations. Get the latent representation of each image in a

training dataset or the test dataset, for that matter, if that is where you would like to study for

disentanglement.

Then we train a linear regressor. So you learn k different linear regressors, , that predicts𝑓
1
......  𝑓

𝑘

each generative factor given the entire latent vector z. So you have k different generative𝑔
𝑖

factors, and hence k different linear regressors. How do you learn them? For each input image,

you would get a latent factor z, and you want to use that now to predict the gender here? Or what

was the color of this Apple?

That would be the value of each generative factor. Once we train these linear regressors, it will

give you a weighted combination of each latent factor. That is what linear regression does. So

you would now have an entire matrix, , which tells us how much a latent factor is important𝑊
𝑖𝑗

𝑧
𝑖

to predict a generative factor . We will call this the relative importance matrix, which is the𝑔
𝑗

absolute value of ’s, obtained through regressors.𝑊
𝑖𝑗
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Once we get the relative importance matrix, there are quantities defined for disentanglement:

completeness and informativeness. Let us look at disentanglement first. This metric tries to

capture the degree to which representation disentangles underlying factors of variation. This is

obtained by defining as , where H is the entropy of . What is the probability𝐷
𝑖

1 − 𝐻(𝑃
𝑖
) 𝑃

𝑖

distribution ? is defined as a vector of ’s for each generator factor , where each is𝑃
𝑖

𝑃
𝑖

𝑃
𝑖𝑗

𝑔
𝑗

𝑃
𝑖𝑗

given by in that matrix divided by all the entries in that particular row corresponding to that𝑅
𝑖𝑗

𝑖

latent factor.

So, that is the disentanglement score of the latent. So, we ideally want the latent to predict𝑖𝑡ℎ

only one generative factor and not predict all. So, the Total Disentanglement score is then given

by summation , where was the disentanglement score of only the latent. So, theρ
𝑖
𝐷

𝑖
𝐷

𝑖
𝑖𝑡ℎ

overall disentanglement score is given by summation , where the coefficient is given byρ
𝑖
𝐷

𝑖
ρ

𝑖

summation over j, divided by summation over , , which is the normalization over the𝑅
𝑖𝑗

𝑖𝑗 𝑅
𝑖𝑗

column of that importance matrix.

The second metric is completeness, which is the degree to which a single latent variable captures

each underlying generative factor. For each generative factor , the completeness is defined as𝑔
𝑗
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, where is defined as above. If a single latent variable contributes to ’s prediction,1 − 𝐻(𝑃
𝑗
) 𝑃

𝑗
𝑔

𝑗

the score would be 1. We only want one latent variable to correspond to a generative factor. If all

latent variables contribute equally to ’s prediction, the score is 0 because that represents the𝑔
𝑗

opposite of disentanglement. We call that situation maximally over complete, where all latent

factors correspond to just one generative factor in the data.

(Refer Slide Time: 28:00)

The third metric is Informativeness. How informative are the disentangled latent representations?

This measures how useful, a representation is in capturing the underlying factors. This is

considered with respect to a specific task. For example, a classification task in which you would

like the latent representation to capture information about the object of interest. How do we

measure this?

The prediction error gives the Informativeness of z about a particular generator factor 𝑔
𝑗

between the original generator factor and the predicted generator factor. It is obtained using one

of those regressors that we had defined earlier. These metrics, including informativeness, depend

on the goodness of those regressors that we use in the first step.
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That completes our discussion of disentanglement. I hope it provided you with an introduction to

the topic, a couple of methods that enforce disentanglement, as well as how to measure whether a

generative model is disentangled. As homework, please read this excellent blog, “From

Autoencoders to Beta-VAE”. Another blog on “Review of Disentanglement with VAEs” and

optionally, the papers that we referred to in the slides.

We left behind the question in the first mutual information gap metric: Why the gap and not just

mutual information itself? Think about it and we will discuss it next time.
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