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Image Sampling 

The next topic we are going to look at is another important fundamental topic in processing of                 

images which is sampling and interpolation. Before we go there, we will quickly review the               

questions that we left in the last lecture. 

 

(Refer Slide Time: 0:31) 

 

So one of the questions we asked in the last lecture was, by implementing convolution by going                 

through, to a Fourier domain that is using the convolution theorem, what cost improvement do               

you really get? Convolution theorem allows us to define convolution in the spatial domain as a                

multiplication in the frequency domain and then taking an inverse Fourier transform. So you take               

the individual Fourier transforms of your g and h which can be our image and your filter or                  

kernel and then you multiply them and then you do the inverse Fourier transform. 

Let us take a simple basic case here to explain the cost improvement, so your image convolution                 

takes time where is the image size and is the kernel size. Then by (N k )O 2 2    N × N      k × k        

performing the convolution in the Fourier domain you are still going to have a cost of for                )O(N 2   
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doing a single pass over the image. In addition to that to do FFT you will need for                 )O(N 2 logN 2   

the image, recall that when we spoke about the Fast Fourier Transform, we said that if you have                  

N samples, the cost is going to be N log N. 

In our case an image has pixels, so the cost of computing for your fast Fourier Transform is      N 2              

going to be . Similarly, kernel which is of course . So together   )O(N 2 logN 2   )O(k2 log k2      k × k    

your computation is going to be . Any other computations that you      ) O(k )O(N 2 logN 2 +  2 log k2       

are going to have are going to be additive and this will be the largest component which will                  

overshadow the others. 

And clearly you can see that this is cheaper than the cost, the original image convolution                

operations, especially when k gets bigger. Which means if your filter size or your mask size gets                 

bigger using fast Fourier Transform to implement convolution is going to give you some cost               

benefits. A lot of the deep learning libraries that you use today, already implement convolution               

through Fourier transforms, you may not know it, you may just be using a library, a deep                 

learning libraries say, for instance and you just invoke convolution but the backend of this, many                

of them already use fast Fourier Transforms to implement their convolution which makes it fast. 

(Refer Slide Time: 3:09) 
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The other exercise we had was to match spatial domain images, hope you had chance to figure                 

out these answers yourselves in case you had doubts on the answers, let us do the simple ones                  

first. 

(Refer Slide Time: 3:25) 

 

1 would go to D, that is straight forward. 3 would go to A, straight forward and we also had that                     

clue in one the slides in the earlier lecture. And 4 goes to C mainly you look at 4, you see a very                       

strong vertical set of edges and you see that image C has a lot of horizontal edges in image. So                    

the horizontal edges in the original image would lead to a vertical edge in the Fourier transform.                 

Go back and look at the sample Fourier images that we saw last lecture, you will see that we saw                    

an example of a vertical line in your spatial domain which lead to a horizontal line in your                  

Fourier domain which would be the inverse the other way. 

So if you had a horizontal line, if you had a horizontal line in your spatial domain you can get a                     

vertical line in your frequency domain. Once again I think the scope of this course would not                 

allow us to go too deep in to the Fourier domains and related concepts plus, but do read the links                    

that we shared in the last lecture. 
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(Refer Slide Time:  4:37) 

 

Regarding the other two images, which can be a bit tricky image 2 goes to E and the reason for                    

that is if you look at image 2, there is pretty strong vertical line there and that comes from this                    

horizontal lines at the horizon of the water or even these horizontal lines that you have in the                  

repulse through there are lots of horizontal lines in your repulse, that is translating to this vertical                 

line in the Fourier match. 

And the fifth one is a straightforward extension, in the fifth one as you can see that the there are                    

lots of stalks in the flowers that are giving the horizontal aspect of the frequencies and there are                  

also lot of horizontal edges across the different flowers that give you some of these vertical                

frequencies. 
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(Refer Slide Time:  5:26) 

 

Let us review one of the questions we asked the last time again as to what sense does a                   

low-resolution image make to us? If we had to go back and try to understand this from human                  

perception perspective, it is understood today that early processing in human’s filters in the              

human visual system are filters that look for different orientations and scales of frequency. We               

will review this bit more carefully later but sometimes people also relate them to what are known                 

as Gabor filter. 

And secondly the perceptual cues in the human visual system are largely based on mid to high                 

frequencies. So remember once again, high frequency means an edge because there is a sudden               

change in intensity value as you move from one pixel to the next pixel along a row or a column.                    

If it is along a row, you would call that a vertical frequency, if it is along a column, you would                     

call that a horizontal edge. 

So perceptual cues depend on mid to high frequencies in general, so but when you see a                 

low-resolution image, it is equivalent to sub-sampling image or if you are seeing an image from                

very far away you are actually sub-sampling the image, which means you may be losing some of                 

the high frequency information but you do get a lot of the low frequency and mid frequency                 

information which is good enough to get a sense of what the object is but may not give you finer                    

details. 

133



 

(Refer Slide Time:  6:56) 

 

So, how do you sub-sample an image as an operation? The simplest way to sub-sample is given                 

an image such as this, you simply throw away every other row and column. Consider only every                 

alternate pixel both row wise and column wise. That straight away gives you a half size image,                 

you can then go to repeating this to go to lower and lower resolutions. 

(Refer Slide Time:  7:27) 
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But if you actually zoomed into these low-resolution images, or the sub-sampled images, this is               

how they look, we are just zooming in to these images here and if you just zoomed in and looked                    

at those images, the half sampled image gets you something like this, the quarter sampled image                

at a 2x zoom gets you something like this, the 1 by 8th image at a 4x zoom looks like something,                     

something like this. 

You may ask, say yes, that is expected, I mean if you sub-sample, why do you, I mean why do                    

you worry about how it looks at close, that is a valid question. But there is a reason for bringing                    

this up here is the last image here looks pretty crufty, it has too many artifacts, can we at least                    

make it look smooth? We understand that by subsampling you have lost some information but               

can it appear smooth when you zoom in, is what we are looking for, we understand that you may                   

have lost sharpness but we still want to look, make it look smooth. What do you think? How                  

would you achieve this? 
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(Refer Slide Time:  8:43) 

 

Let us wait for the answer for a moment but let us also see another example of an effect such as                     

this. So do you what is happening in this kind of an image? So this is the original image, we have                     

sub-sampled in some way and you get an effect such as this.  

(Refer Slide Time:  9:05)  

 

This effect is also known as aliasing. So aliasing generally happens when your sampling rate is                

not high enough to capture the amount of detail in the image, we are going to see a couple of                    

examples and then re-visit the painting that we saw and how do you ensure that it is not crufty.                   
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So whenever your sampling rate is not high enough, you will not get the details, example you see                  

a sinusoidal wave form on top here. If you sub-sample, only at these points remember that you                 

are not looking at the downward trend of the sin wave. 

So if you only sub-sample at these black points, you may think that this is the actual sin wave.                   

Remember here that the frequency of this red wave that we have just drew is very different from                  

the original wave. And why is it so different, only because we did not sample the original signal,                  

when I say original signal I mean the one here in purple. Because we did not sample it enough,                   

that is the reason why we end up getting this kind of a shape which is very different from the                    

original sinusoid wave. 

(Refer Slide Time: 10:25) 

 

So what you need to do to get the sampling right, ideally you need to know the structure of your                    

original signal and this is where an important concept called the Nyquist rate comes into the                

picture. We also mentioned this briefly in the previous lecture with the minimum sampling rate               

that is required to reconstruct your original signal or to capture the original signal in its actual                 

form is called the Nyquist rate. So now what does the Nyquist rate mean? 
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(Refer Slide Time:  10:58) 

 

 

Nyquist rate goes backs to fundamentals from informational theory and signal processing where             

Shannon whose sampling theorem is very popular, proposed that the minimum sampling rate or              

the Nyquist frequency is given by which has to be at least , here is the highest      f s       2 * fmax  fmax      

frequency in a signal, it is the highest frequency in a signal. And we are saying now and for an                    

image we would say it is an image and we are saying that your sampling rate or Nyquist                  

frequency should be at least twice the highest frequency that you have in your image or signal.                 
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Why is this so, we are going to see in a moment but we can explain the impact of not doing this                      

in an image setting, in a video setting or even in a graphic setting. Let us see couple of examples. 

(Refer Slide Time:  12:07) 

 

So in an image setting if you do not sample your original signal at the appropriate frequency                 

which is twice f max, your shirt is going to look very weird and this is as I said what is known as                       

aliasing. 

(Refer Slide Time: 12:21) 

 

139



In a video, this is something that you may have observed a lot, sometimes when you go out on a                    

road you see a bicycle, especially it happens with bicycles or car wheels, you may although car                 

is moving forward, when you look at the wheels alone, it may appear that the wheels are circling                  

backward. So this could be first sight bicycle or a car, try observing this if you have not already                   

done this. 

If you have not asked yourself why this happens, here is the reason. The reason is if you now                   

take the motion of a wheel to be the top row here, so the top row here is the actual motion. As                      

you can see the top row, you can see that the arrow here is moving in a clockwise direction, so                    

you can assume that this is something like a cycle wheel moving in a clockwise direction. But we                  

have chosen to sample it only at three locations across all of these. So the top row is the actual                    

movement of the wheel but these boxes here are the ones that are actually sampled, they are the                  

ones that are sampled. 

So if you looked at only the sampled positions, you see that the arrow is first here, then it is here,                     

then it is here, so on so forth. So probably in fact the second and third one could give you the                     

reason why this effect happens, so you see that if you only took the second and the third one, you                    

would actually think that your wheel is moving counter clockwise, because those are the only               

two samples you have and the arrows moving in the counter clockwise direction, but originally               

your wheel was moving in the clockwise direction. This simply means that you are not sampling                

the wheel at the frequency at which it is rotating or at twice the maximum frequency at which it                   

is rotating. 

(Refer Slide Time:  14:16) 
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Here is another example from graphics and the reason is again the same. You can see in this                  

particular case that the aliasing is prominent at these regions where the frequency is very, very                

high. Remember once again, when we say frequency in an image, we mean how quickly the                

pixels change between black and white. When we say black and white, it can be dark grey or                  

light grey but going from black and white and that becomes very high, very closer to the horizon                  

of this image. And that is where the frequency is very high, which means your sampling rate has                  

to be twice that frequency to be able to be true to the original image and this is an effect that we                      

often see with graphics. 

(Refer Slide Time:  14:57) 
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A more tangible way to understand why you need to sample at twice the maximum frequency,                

we are not going to derive Shannon sampling theorem here because that is not the focus of this                  

particular course but let us try to intuitively understand why you need to do sample at twice the                  

maximum frequency. Let us take this example of a chess board, so you have a chess board here                  

and we argue now that the top row are examples if good sampling practices and the bottom row                  

are bad sampling practices. 

So let us see here that if you see this one here, that is the bottom left, you can see that the                      

samples are these circles here, you can see those circles. And when you see those samples, you                 

can clearly see that we are sampling all of them at only blacks. So if you, if you had only those                     

four samples, you going to assume this entire board is a black board, that there are no white                  

squares in between because you never sampled in the white squares. 

So clearly you are not sampling at that appropriate frequency, the frequency here is how quickly                

does white and black change in how many pixels does it change. Clearly you are not sampling at                  

twice that maximum frequency and it is going to give you poor information. Here is a slightly                 

better sampling but still not complete, so once again here you can see these hallow circles, you                 

can see that you improved your sampling a little bit but once again you see a black, you see a                    

white and again your third sample on that first row is a white again. 
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So, which means your perception or any further processing is going to imagine that this is black                 

followed by a series of white, that is not checker board or a chess board, but it is just an entire                     

block of white, after the first small square of black it is an entire block of white, which again is                    

poor sampling. So here is a sampling where we actually go at twice the frequency, you may ask                  

why twice, so in this case remember here that the actual frequency is when a signal completely                 

goes through between its variations. 

So in this case a signal completes from here till here and we are sampling twice inside those two                   

boxes. So which means that we are sampling twice the maximum frequency. And when you               

sample like that you have got a sample in every black square and every white square and you                  

now know this is a checker board. Obviously if you sample more than that, that is even better for                   

you. Hopefully that give you an intuitive understanding of why you need to sample any signal,                

any image at, at least twice the maximum frequency of content in the image. 

(Refer Slide Time:  17:53) 

 

So a good anti-aliasing technique is Gaussian pre-filtering, we will talk about what Gaussian              

pre-filtering means in a moment but this is the image that we saw earlier, we said that this image                   

was crufty and this is what we want to try to achieve, we do understand that if you sub-sample,                   

you going to lose some information but we at least wanted to make it look smooth. 
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(Refer Slide Time:  18:21) 

 

So how do you do Gaussian pre-filtering? You first going to take an image and then do a                  

Gaussian blur on it, you know now what a Gaussian blur is, it is Gaussian smoothing. You can                  

take a 3x3 Gaussian kernel, in case you do not recall what a Gaussian kernel is, remember it look                   

something like .[[1, , ], 2, , ], 1, , ]]1
16 2 1 [ 4 2 [ 2 1  

Similarly, you can also build 5x5 kernels and so on and so forth. So you first apply that kernel on                    

your input image that gives you a blur version of the image. Now, you sub-sample, then before                 

you sub-sample again blur then sub-sample, blur then sub-sample, blur then sub-sample, so on              

and so forth. Why do you think this works? There is a reason for this. Let me ask you this                    

question, this as we said is a Gaussian filter. 

Do you recall what a Gaussian filter is, a low pass filter or a high pass filter? A Gaussian filter is                     

a low pass filter, which means it removes high frequencies and only passes through the low                

frequencies, relatively lower frequencies which means it is going to remove, remember any             

smoothing filter removes a certain amount of high frequencies. So by applying the Gaussian blur,               

you have removed the high frequency which means your sampling rate now can actually be               

reduced. Remember again the Shannon sampling theorem states that you must sample at least              

twice the maximum frequency in the image. 

If I reduce the maximum frequency in the image, I can sample at a lesser rate. And that is the                    

trick that we employ to be able to sub-sample but still have a smooth effect in your output image.                   
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So you do a Gaussian blur, now your overall frequencies have come to a smaller range, now you                  

can afford to sub-sample without having an aliasing effect or cruftiness in the image and that is                 

what we mean Gaussian pre-filter. 

(Refer Slide Time: 20:40) 

 

So now sub-sampling is one side of the story and the other side of the story is how do you                    

upsample. Sometimes you need to go from a low-resolution image to a high resolution image and                

the simplest way to do this would be a very standard interpolation operation. The interpolation               

between any two values, so you have, we are talking about the real axes, the interpolation                

between any two values here is simply values that lie in the line connecting, at least linear                 

interpolation is on the line joining those two points. 

So the simplest form of interpolation that we can do, if we want to upsample an image is what is                    

known as nearest neighbour interpolation, where we simply repeat each row and column 10              

times. So every pixel, you repeat it 10 times along the column and 10 times along the row, so it                    

almost becomes like one entire 10 by 10 block has exactly the same value. Then you take the                  

next pixel repeat it for 10 columns, repeat it for 10 rows which means the next 10 by 10 block                    

has the same value so and so forth. 

Good news, your resolution goes up; bad news, you are going to have such artifacts across the                 

image because this is exactly what you did, because you took several blocks, several pixels and                
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simply expanded them into blocks. How can we do better than this? Clearly we do not want to                  

upsample images like this and have a blocky effect in the upsampled image. 

  

(Refer Slide Time:  22:13) 

 

So the way we can go about doing interpolation or upsampling while retaining some smoothness               

in the output is, let us try to recall how digital image is formed again, recall an image being a                    

discrete sampled version of the original continuous function or the original continuous signal. So              

you have an original signal , you quantize it at certain locations which gives you your image or     f              

your signal . In our case it is going to be an image.[x, ]F y  

(Refer Slide Time: 22:51) 
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So as we already said this is nothing but a discrete point sampling of a continuous function. So                  

when we do interpolation, we are simply asking the question can we somehow reconstruct that               

original continuous function from the discrete samples. That is the question that we are trying to                

ask because if we do that, we could interpolate and go to any resolution that we want to go for. 

(Refer Slide Time: 23:16) 

 

Unfortunately, in practice we do not know the small f which is your continuous function. We do                 

not know that continuous function, we do not know how, what was the real world seeing from                 
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which your image was captured in a sampled manner. However, we can try to approximate this                

in a principled way and the way we are going to do that is through a convolution approach. 

So the first step that we want to do is convert your continuous function, sorry, convert your F,                  

which is your discrete sample version to a continuous function because we do not know the                

original continuous function we are going to define a pseudo continuous function which simply              

states that wherever you know the value, you simply put the images value there, everywhere else                

you just say it is 0. This would be an automatic version of a continuous, this is at least a                    

continuously defined function, let me put it that way, at least for the moment. 

(Refer Slide Time: 24:18) 

 

So now we try to reconstruct your f hat which is the resolution at which you want to take f to, by                      

convolving this pseudo continuous image with some filter. So we want to ask if, if we have                 

some, this is not exactly right in terms of the function, so let me erase that. But if we have this                     

function, continuous function, , can we get some kernel h in such a way that we can construct   fF                

your original, not original but at least an upsampled signal? What do you think ‘h’ should be? 

This image should give you some understanding, maybe a signal such as a tent, in a shape of a                   

tent could help you with the 1D signal perhaps, but that still does not answer how convolution                 

can take us from one resolution to a higher resolution because the way we saw it, convolution                 

can maintain the same resolution if you include padding and if you do not pad, you are going to                   
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be, you probably will lose a few pixels on the boundaries. But now we want to go to a higher                    

resolution then we use convolution. 

 

(Refer Slide Time:  25:36) 

 

 

Now, to be able to perform interpolation and then upsample an image to a higher resolution                

using convolution, we are going to do it using an interpolation kernel which is defined as what                 

you see here. Remember again that your original convolution is defined something like this,              
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where you have and this is the new definition that we are going to   (i, ) (k, )h(i , j )g j = ∑
 

k,l
f l − k  − l             

use for interpolation. 

And if you observe carefully, the main difference between these two expressions, is the quantity               

r here, that is multiplying k and l, and r is what we call as the upsampling rate. So if you want to                       

double your image, your r is 2, if you want to quadruple your size of your image, remember we                   

are doing up sampling, so if you want to quadruple the size of your image, r is going to be 4, so                      

on and so forth. Let us try to understand how this actually works. 

Let us just for the sake of simplicity, let us look at one-dimension variant of this. Let us say                   

. That is the one dimensional variant of the same equation, remember once(i) (k)h(i k)g = ∑
 

k
f − r              

again that an image is a 2D signal for these purposes. So a lot of these expressions that we write                    

for images, if you remove one-dimension, you can apply that as convolution for one dimensional               

signals. 

So this is what we actually have in one dimension, so it is just easier to explain in one dimension.                    

So let us consider, let us try to understand what is actually happening. So let us consider an x                   

axis, so let us assume that there are some signals f(k-1), that is it, there is another signal f (k),                    

there is another signal here f (k+1), so on and so forth. This is very similar to what you saw in                     

the earlier slide. 

So I just drew lines such as these to represent the various values of f that I have with me, that is                      

my input image which I want to increase the resolution of. So now, because I want to increase                  

the resolution, the question I am asking here is if I take some I here in between those values,                   

what would be g(i) but g is the output, f is the input, that is what I am trying to ask. So in the g                         

axis the tricky part here is that the coordinates, the indices in g are different from the indices in f,                    

because f has only a certain number of indices whereas g has double those number of indices. 

So this would be rk-1 in g indices, this will be rk and this would be rk+1 in the indices of g. Now                       

if we try to understand what g of i is trying to do here, it is , as you take many k                (k)h(i k)∑
 

k
f − r       
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values, so of course k can range from k-1 to k+1. If you take a 3x3 window or a higher                    

depending on k simply defines the length of the window that you have. 

So in this case, so what we need now is h(i-rk), so if you again took an example such as this,                     

remember here that the h was a one of the interpolation kernels, in this case it is called the tent                    

kernel because it looks like a tent. And what this kernel does is as you go further out from the                    

central pixel on which you place the kernel, the effect of those pixels fall off linearly, not                 

exponentially but linearly. So that is your, that is what is your tent kernel. 

So if you add a hat such as this, we are simply saying that this is f, so if you place the h kernel                        

here, so if your h kernel is placed something like this, so then you are saying g(i) is going to be                     

f(k)h(i-rk), i-rk is this value here, i-rk is going to be this value here with respect to h, which is the                     

green cuff, so you are going to multiply fk by h of i minus rk f k plus 1 by h of i minus rk plus 1                           

which is going to be this quantity here, so on and so forth. So by doing this operation, you are                    

able to interpolate and you are able to, you will obviously sum up those values, they are still in                   

the summation here, you will sum of those values and that will give what the value of g of i is.                     

That is how this interpolation kernels work. 

 

(Refer Slide Time:  30:49) 
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So now linear interpolator is what we saw corresponding to a tent kernel, you can also have more                  

complex kernels such as B-splines, those are one of the most complex kernels. 

(Refer Slide Time: 30:59) 

 

But here are some qualitative results of applying this interpolation, so the first one that we                

already saw is an effect of doing the nearest neighbour interpolation, where you have the               

blockyness effects. Then if you do bilinear interpolation which is the linear interpolation that we               

spoke about but along the two axis and you get something like this, if you going to bicubic                  

interpolation you get something like this, so on and so forth. 

So the main difference in these interpolations is the h kernel that you use, in one case it is nearest                    

neighbour, in the second case it is bilinear, third case is bicubic. We are not going to define every                   

kernel but you can look at the references at the end of this lecture to be able to understand                   

various kernels that have been defined in practice. 
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So just like how we defined interpolation, you can also define the complementary operation of it                

which is decimation. Decimation means sub-sampling, so which means while we saw            

sub-sampling so far as simply omitting every other pixel where if you do Gaussian pre-filtering,               

you also ensure that you get a smoother output. You can also achieve sub-sampling using a                

convolution like operation where it would be very similar, the only thing is instead of rk you                 

would have k/r and l/r here because you now want to sub-sample and not interpolate. 

(Refer Slide Time: 32:28) 
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So that is where we going to stop this lecture, to know more interpolation kernels and decimation                 

kernels, you can look at these references that are on your homework, please read them to                

understand this better and we will continue with the next topic. 
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