
Deep Learning for Computer Vision
Professor Vineeth N Balasubramanian

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad
Generative Adversarial Networks: Part 02

(Refer Slide Time: 00:13)

So, to evaluate optimality for training such a network, let us reconsider the objective, min over

G, max over D, the expectation for data coming from the training distribution, plus𝑙𝑜𝑔 𝐷(𝑥)

expectation for the generated samples, , where z comes from your Gaussian𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))

prior for instance. Now, if we expanded out your expectation, you have min over G, max over D,

integral over x, .(𝑝
𝑑𝑎𝑡𝑎

(𝑥) 𝑙𝑜𝑔 𝐷(𝑥) + 𝑝
𝐺

(𝑥) 𝑙𝑜𝑔 (1 − 𝐷(𝑥))) 𝑑𝑥

We assume that the x in the second term is generated data, which we define as . So, this is𝑝
𝐺

(𝑥)

simply an expansion of the Expectation term in terms of an integral. So, let us now take the max

inside the integral. So, the only difference between step 1 and step 2 is that the max in step 1 has

gone inside; otherwise, the rest of the terms are exactly the same.

Now, to understand what the max of such a function would be, let us try to write out using some

variables. In general, let us say , , and . So, then you can write this𝑦 = 𝐷(𝑥) 𝑎 = 𝑝
𝑑𝑎𝑡𝑎

𝑏 = 𝑝
𝐺

entire integrand here as . We ideally need to know when do𝑓(𝑦) = 𝑎 𝑙𝑜𝑔 𝑦 + 𝑏 𝑙𝑜𝑔 (1 − 𝑦)

you attain the maximum over D or maximum over y for such a function.

1358

To find the maximum of a function, you need to take its derivative and set it to 0. So, let us do

that , or the derivative of is that follows from derivatives of𝑓
^

𝑓(𝑦) 𝑎/𝑦 − 𝑏/(1 − 𝑦) 𝑙𝑜𝑔 𝑦

and and setting this to 0, we get that the maximum is obtained at .𝑙𝑜𝑔 (1 − 𝑦) 𝑦 = 𝑎
𝑎+𝑏

What does that mean when we substitute back the variables? For a given x, the optimal

discriminator is . Let us keep this in mind and𝐷
𝐺

*(𝑥) = 𝑝
𝑑𝑎𝑡𝑎

(𝑥) / (𝑝
𝐺

(𝑥) + 𝑝
𝑑𝑎𝑡𝑎

(𝑥))

continue to look at the objective. So, that is the optimal discriminator, which does not end the

story because we also have a generator to think about.

(Refer Slide Time: 03:29)

1359

Let us now look at the generator side of the optimality. So, you have a min of G, of

, the optimal discriminator, let us assume, the max of D has been evaluated,𝑝
𝑑𝑎𝑡𝑎

(𝑥) 𝑙𝑜𝑔 𝐷
𝐺

*(𝑥)

and we substitute for a max of D inside the integral, plus . This can now𝑝
𝐺

(𝑥) (1 − 𝐷
𝐺

*(𝑥))𝑑𝑥

be written as, we replace , the optimal discriminator, as ,𝐷
𝐺

* 𝑝
𝑑𝑎𝑡𝑎

(𝑥) / (𝑝
𝑑𝑎𝑡𝑎

(𝑥) + 𝑝
𝐺

(𝑥))

which we got from the previous slide, which is replacing for that and we also replaced for that in

the second term.

Now, from here, we can see that the second term, , can1 − 𝑝
𝑑𝑎𝑡𝑎

(𝑥) / (𝑝
𝑑𝑎𝑡𝑎

(𝑥) + 𝑝
𝐺

(𝑥))

now be rewritten as , a simple arithmetic operation on top of the𝑝
𝐺

(𝑥) / (𝑝
𝑑𝑎𝑡𝑎

(𝑥) + 𝑝
𝐺

(𝑥))

earlier expression. Now we are going to get back this expression in terms of expectations.

We are going to bring back expectations from integral. So, the integral over the entire term dx

can be now rewritten as, expectation over x coming from ,𝑝
𝑑𝑎𝑡𝑎

, plus, the expectation of x coming from , which is the𝑙𝑜𝑔 [𝑝
𝑑𝑎𝑡𝑎

(𝑥) / (𝑝
𝑑𝑎𝑡𝑎

(𝑥) + 𝑝
𝐺

(𝑥))] 𝑝
𝐺

generated distribution, . What do we do with this?𝑙𝑜𝑔 [𝑝
𝐺

(𝑥) / (𝑝
𝑑𝑎𝑡𝑎

(𝑥) + 𝑝
𝐺

(𝑥))]

1360

(Refer Slide Time: 05:13)

Let us now multiply and divide both of these terms by 2. Once we do that, we can take the

denominator’s 2 and add those two terms up and get a minus. Using the first 2, you would get a

minus . Using the second 2, you will get a minus . When you put these two together,𝑙𝑜𝑔 2 𝑙𝑜𝑔 2

you will have a minus term. Now, the first term can be written as a KL-divergence between𝑙𝑜𝑔 4

and .𝑝
𝑑𝑎𝑡𝑎

(𝑥) (𝑝
𝑑𝑎𝑡𝑎

(𝑥) + 𝑝
𝐺

(𝑥))/2

Remember, this would be , and you will be left with and𝑙𝑜𝑔 (𝑝/𝑞) 𝑝
𝑑𝑎𝑡𝑎

(𝑥)

. Similarly, the second term would be the KL divergence between(𝑝
𝑑𝑎𝑡𝑎

(𝑥) + 𝑝
𝐺

(𝑥))/2 𝑝
𝐺

(𝑥)

and . You still have the minus . Now, let us briefly review some(𝑝
𝑑𝑎𝑡𝑎

(𝑥) + 𝑝
𝐺

(𝑥))/2 𝑙𝑜𝑔 4

standard notations and definitions. Remember, KL divergence is given by, in this case, to

simplify things, the expectation of x belonging to , instead of , I can write it as𝑝 𝑝𝑙𝑜𝑔(𝑝/𝑞)

expectation of x belonging to , by .𝑝 𝑙𝑜𝑔 𝑝 𝑙𝑜𝑔 𝑞

Jenson-Shannon Divergence is another divergence measure to measure the distance between two

probability distributions. Given two distributions and , the Jenson-Shannon divergence𝑝
𝑑𝑎𝑡𝑎

𝑝
𝐺

between those distributions is given by plus𝐾𝐿 (𝑝
𝑑𝑎𝑡𝑎

, (𝑝
𝑑𝑎𝑡𝑎

+ 𝑝
𝐺

)/2)/2

. So, this would be the Jenson-Shannon divergence between these𝐾𝐿 (𝑝
𝐺

, (𝑝
𝑑𝑎𝑡𝑎

+ 𝑝
𝐺

)/2)/2

two distributions, which means now we can replace the KL divergences in our case.

1361

So remember, you would have had a by 2 and by 2. So, to ensure that this now becomes min over

G, . Remember that Jenson-Shannon divergence, just like KL is also2 * 𝐽𝑆𝐷(𝑝
𝑑𝑎𝑡𝑎

, 𝑝
𝐺

) − 𝑙𝑜𝑔4

a non-negative quantity by definition. Now, what does this mean? Let us put all things together

now.

(Refer Slide Time: 07:53)

We already saw that the optimal discriminator is given by .𝑝
𝑑𝑎𝑡𝑎

(𝑥) / (𝑝
𝑑𝑎𝑡𝑎

(𝑥) + 𝑝
𝐺

(𝑥)

(Refer Slide Time: 08:03)

1362

This particular term, minimizing over G, , because Jenson-Shannon2 * 𝐽𝑆𝐷(𝑝
𝑑𝑎𝑡𝑎

, 𝑝
𝐺

) − 𝑙𝑜𝑔4

divergence is a non-negative quantity. This would be minimized when because then𝑝
𝑑𝑎𝑡𝑎

= 𝑝
𝐺

this quantity will become 0, and you will be left with minus . So, the generator G is 𝑙𝑜𝑔 4

obtained when . We knew this intuitively. But we also now see this mathematically.𝑝
𝑑𝑎𝑡𝑎

= 𝑝
𝐺

(Refer Slide Time: 08:44)

So, let us bring that back. We also know that at optimality for a generator, , or the𝑝
𝑑𝑎𝑡𝑎

probability distribution of the training data is equal to , which is the distribution of the𝑝
𝐺

generator. Now, putting the two together, it states that the optimal discriminator is also

because at optimality. And that can also be written as𝑝
𝐺

(𝑥) / (𝑝
𝐺

(𝑥) + 𝑝
𝐺

(𝑥)) 𝑝
𝑑𝑎𝑡𝑎

= 𝑝
𝐺

, both of which equate to half. At optimality, the discriminator𝑝
𝑑𝑎𝑡𝑎

(𝑥) / (𝑝
𝑑𝑎𝑡𝑎

(𝑥) + 𝑝
𝑑𝑎𝑡𝑎

(𝑥))

should give you an output half to maintain the balance between generator and discriminator.

We do not want the discriminator always to give one or always give zero. Suppose it outputs half

for any sample that is provided to it. We think it has been fooled because it cannot distinguish

between a real sample and a fake sample.

1363

(Refer Slide Time: 09:51)

So, that is about GANs. A follow-up architecture developed in 2016 by Radford et al. was called

the Deep Convolution GAN, or the DCGAN. DCGAN was a landmark achievement in

improvements over GANs because it came up with a few different ways of improving the

generation quality of images using GANs. The main idea of DCGAN was to bridge the gap

between the success of CNNs for supervised learning and unsupervised generative models.

It brings best practices of training CNNs to train GANs with deep architectures. They also show

that you can play with the latent space representations, the z vectors, you sample from a

Gaussian and do what is called Vector Arithmetic, which we will see soon. They also show how

using such an architecture for GANs gives you strong feature learning capabilities of the

network. Let us see each of these one by one.

1364

(Refer Slide Time: 11:08)

So, in terms of training practices to train good GANs for generation, DCGAN introduced a few

strategies. It replaced deterministic spatial pooling functions such as maxpool with strided

convolution, which allowed to learn spatial downsampling. It removed fully connected hidden

layers for deeper architectures. So, just convolution layers, nothing more. It introduced batch

normalization in both the generator and the discriminator.

This helps prevent generator collapse or helps gradient flow in deep architectures. However,

batch normalization was not applied at the output of G and the input of D. It used a ReLU,

non-linearity for the generator and a leaky ReLU non-linearity for the discriminator. And finally,

for output for the generator, it used a non-linearity that was the final output of the𝑡𝑎𝑛ℎ

generator. And, as before, a sigmoid activation was used in the output layer of the discriminator.

That is to say, whether an input is real or fake.

1365

(Refer Slide Time: 12:29)

So, we talked about playing with the latent space to generate different kinds of images. So, this is

an interesting experiment. What DCGANs demonstrated is that if you had two latent samples, 𝑧
1

and , that you sampled from the Gaussian. You sent it through the generator. You would get𝑧
2

two different outputs because that is what two latent are sampled for. If you now interpolated

between those outputs, so if you did , you end up getting a smoothα * 𝑧
1

+ (1 − α) * 𝑧
2

transition of generated images from image to .𝐺(𝑧
1
) 𝐺(𝑧

2
)

(Refer Slide Time: 13:20)

1366

You could now look at it as doing vector arithmetic in latent space. If you had a set of images of

a man with glasses, a set of images of a man without glasses, and a set of images of women

without glasses. You can take the latent vectors corresponding to all men without glasses and

average it. Similarly, take an average vector for all men without glasses and women without

glasses.

Now, if you do arithmetic on those average z vectors or latent vectors, if you say a man with

glasses minus the latent vector corresponding to man without glasses, plus the latent z vector

corresponding to a woman without glasses, and use the resultant latent vector and pass it through

the generator, you end up getting images of a woman with glasses. This is interesting to

understand how the latent variable is interpolated, and the generator learns what the equivalent

interpolation in the image space should be.

(Refer Slide Time: 14:43)

1367

Here is another example of a similar idea for Pose transformation. So, given a set of images

looking left, and its corresponding average latent vector to be , a set of images looking right,𝑧
𝑙𝑒𝑓𝑡

corresponding latent vectors averaged to form . If you consider, , the𝑧
𝑟𝑖𝑔ℎ𝑡

𝑧
𝑡𝑢𝑟𝑛

= 𝑧
𝑟𝑖𝑔ℎ𝑡

− 𝑧
𝑙𝑒𝑓𝑡

difference between the extreme vectors, and , a new latent sample.𝑧
𝑛𝑒𝑤

Remember that z’s are all inputs to the generator. is , and now you provide the𝑧
𝑛𝑒𝑤

𝑧 + α. 𝑧
𝑡𝑢𝑟𝑛

to G, you get transformed images, with various posses between the right and the left pose.𝑧
𝑛𝑒𝑤

(Refer Slide Time: 15:39)

1368

As we mentioned earlier, this work also showed how GANs learn good features that can also be

used for classification. This was demonstrated by training the DCGAN on ImageNet-1k and then

using the discriminator’s convolution features for images from another data set called the

CIFAR-10 dataset. So, the GAN is not trained on CIFAR-10; after it is trained on ImageNet, you

take CIFAR-10 dataset images. CIFAR-10 is another data set.

You pass those images through the discriminator of the GAN, and you now take its features at a

particular layer of the discriminator and use these features with an SVM to classify those

CIFAR-10 images into ten different classes. CIFAR-10 stands for a dataset with ten different

classes. That is what is done in this particular experiment. You see that the result obtained is

fairly competitive to many other contemporary methods at that time in 2016. So, this shows the

robustness of the features learned by the discriminator.

1369

(Refer Slide Time: 17:05)

Now, for the final discussion of this lecture, is how do you evaluate GANs? Because so far, for

supervised learning, we could use accuracy. But in GANs, how do you evaluate these models?

One is you could use Human judgment. How would you use Human judgment? You would say a

good generator is one, which can generate images with distinctly recognizable objects, and it also

generates semantically diverse samples.

How do you measure this? Recognizable objects would mean that an independent classifier

would take these generated images and predict the class with high confidence. Semantic diversity

would mean that the generator or the GAN generate samples of various classes in the training

set, ideally, all classes in the training set. That is one way of evaluating GANs.

Another way of evaluating GANs is by looking at the prediction power. Say you take an

ImageNet pre-trained Inception network V3 and see how it performs on the generated images to

understand the quality of generated images. If it performs well, perhaps the images are fairly

representative of a dataset, such as ImageNet. However, it is also to be kept in mind that the

evaluation of generative models is still an open research problem. Some metrics are popularly

followed, but there is still scope for improvement of these metrics.

1370

(Refer Slide Time: 18:49)

One such metric that is popularly used is the Inception score, which is intended to correlate with

human judgment. You consider two quantities, , the softmax output over all class labels𝑝(𝑦 | 𝑥)

of an Inception model, given a data point x. You also have , the generated samples’ class𝑝(𝑦)

distribution. What are you looking for here? We ideally want to have a pointed𝑝(𝑦 | 𝑥)

distribution.

So, we would like one class label, the correct class label to be very high in the distribution, and

all other class labels to have very low probabilities. That is what we want to be. We𝑝(𝑦 | 𝑥)

ideally want such a distribution to be as far away from a uniform distribution. That tells us that

the inception model is highly confident in recognising certain objects generated in a given image.

But is this correct? Not necessarily.

We do not want it to be far away from a uniform distribution. We want it to be far away from

how class labels are distributed among those generated images. That is the baseline for us

because it is possible that the GAN model generated more images of a certain class and lesser

images of another class. So, how the marginal distribution of the class labels in your generated

images looks is the baseline. And you want the class distribution of a specific data point x to be

as far away as from that baseline distribution for your generated images.

1371

(Refer Slide Time: 20:56)

So, the inception score is given by a KL divergence between and . It can be written𝑝(𝑦 | 𝑥) 𝑝(𝑦)

as , which can also be written as the entropy of y, , minus the𝑙𝑜𝑔 (𝑝(𝑦 | 𝑥)) − 𝑙𝑜𝑔 (𝑝(𝑦)) 𝐻(𝑦)

entropy of y given x, . What are these quantities? is the entropy of generated𝐻(𝑦 | 𝑥) 𝐻(𝑦)

sample class labels. Remember, semantic diversity would mean that you have high entropy, .𝐻(𝑦)

So, you are generating samples from all different classes.

High entropy means equally distributed class labels in your generator data distribution. 𝐻(𝑦 | 𝑥)

is the entropy of class labels from the classifier for different data points. If it is distinctly

classifiable, will be very low, which means one class label will dominate the output of𝐻(𝑦 | 𝑥)

the softmax activation function rather than all labels. What are we looking for? We are looking

for a higher Inception score. We would like to be as far away from as possible.𝑝 (𝑦 | 𝑥) 𝑝(𝑦)

1372

(Refer Slide Time: 22:24)

While the Inception score is good, one of the limitations of the inception score is it does not

consider the real data at all. Its metric is purely based on the generated distribution alone. But we

know that the purpose of GAN was to ensure that the generated distribution is close to the real

distribution. So, how do we come up with a metric to measure this? This is done by Frechet

Inception distance called FID score, which tries to address this need.

So, we need to find the distance between the real world data distribution and the generating

models’ data distribution. How do we do this? You take your real images, and you take your

generated images and embed them in the feature space of an Inception V3 model. So, whatever

images you have, your real training images, and your generated images pass all of them through

an Inception network. You would get activations of the pool three layer of Inception v3.

Now, you compute the Frechet distance between two multivariate Gaussians. Once you get those

two sets of features, you compute the Frechet distance. You are given a gaussian distribution

with mean, m, covariance, C, and another distribution with mean , and covariance , . The𝑚
𝑤

𝐶
𝑤

Frechet distance is defined by the first mean minus the second mean 2 norm whole square plus

trace of the first covariance plus the second covariance minus 2 into the 2 covariances squared.

So, that is the definition of the Frechet distance between two multivariate Gaussians. So, given

these two distributions of real and generated samples, you compute their means, compute the

1373

covariances. And then, you can compute the Frechet distance using this formula. So, in this

particular case, the lower FID, the better. Lower FID tells you that the generated distribution is

close to the real distribution.

(Refer Slide Time: 24:56)

Let us see an example of how these metrics look when you use them. So, these are some results

on a data set known as the CelebA, which contains face images of celebrities. In this particular

example, the first column and the third column are FID scores, and the second column and the

fourth column are Inception scores. So, remember the lower FID, the better, the higher Inception,

the better.

So, you can see here, in this particular case, the top row denotes images with added Gaussian

noise. You can see that the FID score keeps increasing, which means it is getting worse and

worse as you add more and more noise that is expected because your distribution is changing.

Similarly, here too, when Gaussian Blur is added, the FID keeps increasing. Similarly, when salt

and pepper noise is added, the FID keeps increasing.

And when ImageNet crops are added to the CelebA dataset, you take some images from

ImageNet, crop certain portions and keep adding them to your CelebA dataset. Once again FID

score goes up. On the other hand, you see the Inception score, which in this particular case, it is

1374

evident that when the ImageNet crop is added, the inception score goes down over time, which is

once again expected.

Remember, the higher Inception score is good. So, as more noise comes in, the inception score

drops. However, for Gaussian noise, Gaussian Blur, and salt and pepper noise, you see that the

Inception score does not show too much sensitivity, sensitivity to these kinds of noises in the

distribution. There is some variation. It is not as stark as for other images.

(Refer Slide Time: 26:58)

With that, your readings for this GAN lecture is a very nice dive into Deep learning on GANs

provided on this particular link. If you would like to play with GANs in your browser, here is a

nice link called https://poloclub.github.io/ganlab. And finally, implementation of GAN on this

particular link, which you can use to play with the code of GAN again.

1375

https://poloclub.github.io/ganlab

