
Deep Learning for Computer Vision
Professor. Vineeth N Balasubramanian

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Lecture No. 61
Deep Generative Models: An Introduction

(Refer Slide Time: 00:14)

From Attention methods in Deep Learning Models and Transformers, we will now move to 2

weeks of a contemporary topic in Deep Learning, Deep Generative Models. Deep generative

models include topics such as GANs, Generative Adversarial Networks, and Variational Auto

Encoders, VAEs, which have been extremely successful over the last few years.

1329

(Refer Slide Time: 00:49)

Before we talk about the overall perspective of Deep Generative Models, let us talk about the

landscape of machine learning itself and try to understand where deep generative models fit into

the scheme of Machine Learning methods. If you considered Supervised Learning, supervised

learning is about learning a mapping between inputs and outputs, that is, data and class labels.

Your data is typically given in the form of input-label pairs, such as , and so on(𝑥
1
, 𝑦

1
), (𝑥

2
, 𝑦

2
)

till .(𝑥
𝑛
, 𝑦

𝑛
)

And the goal of a machine learning algorithm is to learn a model that can map x to y. So, it aims

to learn a function f, which, when applied on x, gives us y, where we would like y to be as close

to the original ground truth, y, that is provided. So, what are the supervised learning settings or

problems that we have seen so far?

1330

(Refer Slide Time: 2:00)

In computer vision, we have seen problems including Classification, Localization with

Classification, Detection, Segmentation, and so on. These are supervised learning problems

where there was an expected output for a given data point. Our deep neural network was trying

to learn the function that takes us from input to output. The nature of the output varies with

different kinds of tasks. For detection, the output looks different from the output for

Classification.

For Segmentation, the output looks different from that of Detection and Classification. That

resulted in different kinds of architectures, loss functions, and so on.

1331

(Refer Slide Time: 02:57)

So, what are we talking about here, to go beyond Supervised Learning. So, if you think about

paradigms beyond supervised learning, we talk about Unsupervised Learning, where the broad

goal is about just understanding data. Another setting is about detecting outliers. That is another

setting where one can use unsupervised learning. Finally, this week's lectures focus on generating

data from past data, with no labels involved as it is, but just generating data.

(Refer Slide Time: 03:39)

1332

So, suppose you considered unsupervised learning, which is perhaps the most popular form of

going beyond supervised learning. The main idea is to capture the underlying structure of the

data. You are given only the data; there are no labels. Since no labels are required, often training

data is cheap to obtain. The most difficult part often can be to get annotations or labels for data,

which can be challenging tasks depending on domains.

For example, in healthcare or genomics, or bioinformatics, getting labels for a data point may

require experts to participate and may be a very costly affair both time-wise and money-wise.

Unsupervised learning is generally categorized into clustering methods, such as K-means,

DBSCAN, and dimensionality reduction methods, such as Principal Component Analysis, ISO

map, and many other such methods.

(Refer Slide Time: 04:53)

The focus of this week's lectures, as I just mentioned, is Generative Models, which is another

variant of unsupervised learning. Given a set of data points, our objective is to generate more

data samples, similar to those in the training set. What does that mean? Given a set of data

points, as you see here, those are points that lie on some manifold. Remember, that manifold

corresponds to a locally Euclidean surface, which you can look at as the intrinsic dimensionality

of your data.

1333

So, suppose data lies on a certain manifold, which corresponds to a distribution. In that case, we

learn a model using some method, which can then sample from a distribution that the model has

learned and generate new data points. What does this mean mathematically? If you had training

data, to , which comes from some underlying distribution, let us say . We would like a𝑥
1

𝑥
𝑛

𝑝
𝐷

generative model to sample data from a distribution to minimize some notion of distance𝑝
𝑀

(𝑥)

between and . We would like to learn so that becomes close to in some notion of𝑝
𝐷

𝑝
𝑀

𝑝
𝑀

𝑝
𝑀

𝑝
𝐷

a distance.

(Refer Slide Time: 06:40)

How do you do this? Can we elaborate on this? Let us try to go a bit further. So, we said we

would like to minimize some distance between and . Given a dataset from an underlying𝑝
𝐷

𝑝
𝑀

distribution, , consider an approximating distribution coming from a family of distributions𝑝
𝐷

𝑝
𝑀

M. Our objective is to find that parameterization in M or that distribution in M given by , theθ

parameters of that distribution, which minimizes some notion of distance between and .𝑝
𝑀

𝑝
𝑀

So, the objective function will be that is, our solution is given by argmin theta over M, someθ*

distance function of , and . What distance function do we use? We choose KL divergence as𝑝
θ

𝑝
𝐷

the distance function, which is a loose distance function between two probability distributions. It

1334

does not satisfy all properties of a distance metric, but it is commonly used to measure the

distance between two probability distributions.

If we replace this distance function with KL-divergence, it can be shown that the above problem

becomes one of maximum likelihood estimation. becomes argmin over belonging to M,θ* θ

expectation with data points drawn from the distribution , . This is maximum𝑝
𝐷

− 𝑙𝑜𝑔(𝑝
θ
(𝑥))

likelihood estimation or minimization of negative log-likelihood. Why is this so? We are going to

leave that as homework. It is fairly trivial to show that if you replace distance with KL

divergence, you will automatically lead in two steps to negative log-likelihood. Please do work it

out. We will discuss it in the next class.

This idea of learning or in this case, using maximum likelihood estimation, is one way of𝑝
𝑀

𝑝
θ

learning generative models or deep generative models, in our case. A set of pixel CNN methods

and pixel RNN methods explicitly use this objective to learn deep generative models. And we

will see these methods a little later this week.

(Refer Slide Time: 09:32)

What are the applications? Why should we learn Deep Generative models? Deep generative

models can be used for image super-resolution. Given an input image of low resolution, you can

use generative adversarial networks or any other deep generative model to learn a super-resolved

1335

version or a high-resolution version of the original image. You could use such models to

colourize images, go from sketches to color images, or go from black and white to color images.

1336

(Refer Slide Time: 10:10)

You could use this for cross-domain image translation to go from one domain to the other. In this

case, we talk about taking a zebra picture and going to a picture of a horse. But you can also talk

about going from a picture to a cartoon, and so on. Finally, you can also talk about generating

realistic face data sets for performing face recognition, and so on.

(Refer Slide Time: 10:44)

There are many more applications; the goal can also be to learn good, generalizable latent

features by learning to generate new images. The model also allows you to learn latent

1337

representations, by which we mean the hidden representations and certain layers of that model.

Which can then be used for other downstream tasks such as, say, classification. You can also use

this generation of new data to augment small datasets. You can then get larger data sets, which

you can train for downstream tasks such as classification, again.

You can use such models for enabling mixed reality applications, such as Virtual Try-on. You can

imagine going to any shopping website that lets us try on a shirt or a trouser before you purchase

them. You could now take your image and see how you would look in that particular shirt, or

how you would look with a specific kind of glasses, or sunglasses, for that matter. Many more

applications that we will see this week, as well as in next week's lectures.

(Refer Slide Time: 12:05)

Before we move on with methods for generative models, what do generative models mean? Let

us try to understand this from a conceptual perspective. Generative models can be distinguished

from their complement, which is known as Discriminative models. In machine learning,

discriminative models aim to learn differentiating features between different classes in a data set.

In contrast, generator models aim to learn the underlying distribution of each class in a dataset.

Note that we are now trying to use an example from supervised learning to understand generative

models better. All the examples that we saw so far of generative models as unsupervised

learning. Generative models can also be used in supervised settings, where you can specify the

1338

class label, and the model will generate data from that specific class. So, for example, if you are

generating a face image, you can say which person you want. The model can generate the face

image for that person, which would correlate to a more supervised setting than an unsupervised

setting.

So, in supervised learning in Discriminative models, the goal is to learn a discriminator that

separates two classes. An example would be support vector machines, which is a maximum

margin classifier. On the other hand, in a generative model, the goal is to learn the

parametrizations of distributions for each class. In a Discriminative model, one would finally do

inference by asking if a test data point belongs to one side of a hyperplane or the other side. If it

fell on one side of the hyperplane, you would say it belongs to class , and if it belongs to the+ 1

other side of the hyperplane, you would say it belongs to class .− 1

Now, in a Generative model, we try to find out that given a data point, what is the probability

that the distribution of class generated this data point? We will try to find out for the same+ 1

data point what is the probability that the distribution of class generated the same data point.− 1

You can see here that the entire approach to assigning a class label for the new point is generative

and tries to understand how likely a certain distribution would have had a probability of

generating a particular data point. That is the difference between discriminative and generative

models more broadly in machine learning.

(Refer Slide Time: 15:25)

1339

So, if you considered a binary classification problem of classifying, say images consisting of 1s

and 0s. A discriminative classifier tries to model the posterior , a conditional distribution,𝑝(𝑦 | 𝑥)

where x is given as input. Your model has to give a particular probability for y given x. So,

discriminative classifiers model this conditional distribution called the posterior. On the other

hand, generative models model the joint distribution .𝑝(𝑥, 𝑦)

So, how would you use a generative model for assigning a class label? You would take a test data

point and use this joint distribution to determine if this data point was assigned a class label .+ 1

What is the probability of having generated such a data point? If this data point was allotted a

class label , what is the probability of generating such a data point? And that would give you− 1

a way of getting a class label from this joint distribution.

Remember, the posterior, conditional distribution, and joint distribution is related to your

probability basics. Where is , your joint, by , which relates to the Bayes𝑝(𝑦 | 𝑥) 𝑝(𝑥, 𝑦) 𝑝(𝑥)

theorem, which states is equal to into by . Some of these𝑝(𝑦 | 𝑥) 𝑝(𝑥 | 𝑦) 𝑝(𝑦) 𝑝(𝑥)

understandings are something that we will use when we talk about different deep generative

models.

1340

(Refer Slide Time: 17:27)

Existing deep generative models can be broadly divided into two kinds: Fully Visible models,

which directly tries to model the observations. Here, the observations are x, and the model tries

to capture these observations themselves without introducing any extra random variables. So, the

only random variables considered are the excess of the data that you have. So, for example, you

could be considering each pixel value of an image as an observation. Based on that, you will

learn a generative model, which can generate new images.

The other category of methods is latent variable models. You introduce other kinds of random

variables known as latent variables, or hidden variables, which we assume generate the data,

which we try to learn as part of generating the latent part of learning the generative model.

Within these kinds of models, latent variable models, there are very broadly speaking two kinds

explicit and implicit models.

In explicit models, we try to explicitly define and learn a certain likelihood of data by defining a

certain distribution. We may, for example, define a Gaussian on data or a mixture of Gaussians

on data and then try to learn the means and covariances of those Gaussians as part of the learning

procedure. On the other hand, in implicit models, there is no distribution assumed. No

probability density function parameterization is assumed.

1341

Given a set of data points, we do have some latent variables. But we would like to learn the

latent variables so that we can generate data points that look similar to the data points that we

have in our training data. We do not impose any specific distributional form on data or the

model’s distribution in this particular case.

1342

(Refer Slide Time: 20:11)

More generally speaking, there is an entire taxonomy of dividing existing approaches for coming

up with generative models. So, as we just said, very broadly speaking, generator models can be

divided into explicit methods and implicit methods. In explicit methods, you assume a certain

PDF density function and try to learn the parameterization. In an implicit function, we do not

assume any such distribution. Still, we just want to learn a certain density function, which can

generate data similar to what we have seen in our original training data.

Within implicit density generative models, a popular example is GANs (Generative Adversarial

networks) which tries to use the implicit density learned and generates data points. Another

variant of implicit generator models is Markov chain based models such as generative stochastic

networks. These are not as popular as GANs these days. But that is where they fit in into the

overall landscape of generative models.

On the other hand, within explicit density generative models, you again have two kinds, one

where the density is tractable, and one can estimate it and move forward to generate data points.

Examples of methods here include Autoregressive models, NADE, MADE NICE, GLOW

Ffjord, so on so forth. We will at least see some of these in later lectures this week.

Another kind is where you do have an explicit density function, but you cannot directly compute

it. Still, you can compute it through an approximation, where the most popular method is through

1343

a method known as Variational Inference, which leads to a model called Variational

Autoencoder. Another approach here is also again using Markov chains to approximate this

density function, which leads to a family of methods known as Boltzmann machines.

We would not cover all of these methods in the lectures but cover the most popular ones,

including GANs, VAEs, and some tractable density methods.

(Refer Slide Time: 22:50)

For more information, you can go through this excellent “Tutorial on Deep Generative models”

by Aditya and Stefano, delivered at IJCAI 2018. If you would like to go further, another tutorial

in a conference called UAI 2017, by Shakir and Danilo. Let us revisit one question that we left

behind: why does using KL-divergence in finding the generator model simplify to maximum

likelihood estimation?

As I already mentioned, it is a straightforward derivation. Please do work it out and try it before

we discuss it.

1344

