
Deep Learning for Computer Vision

Professor Vineeth N Balasubramanian

Department of Computer Science and Engineering

Indian Institute of Technology, Hyderabad

Lecture - 56

Attention in Vision Models: An Introduction

(Refer Slide Time: 00:14)

Having discussed RNNs last week, we will now move to a topic, which is very contemporary in

terms of trying to address some of the technical features of what RNN brings to Deep Learning

which is attention models.

1186

(Refer Slide Time: 00:34)

Before we go into attention models, let us discuss the question that we left behind, which was,

what do you think will happen? If you train a model on normal videos and do inference on a

reversed video, hope you had a chance to think about this. It depends on the application or task.

For certain activities, say maybe let us say you want to differentiate walking from jumping, it could

work to a certain extent, even if you tested it on a reversed video.

However, for certain other activities, see a sports action such as a Tennis forehand, this may not

be that trivial. An interesting related problem in this context is known as finding the arrow of time.

There are a few interesting papers in this direction, where the task at hand is to find out whether

the video is forward or backward. This can be trivial in some cases, but this can get complex in

some cases. If you are interested, please read this paper known as Learning and Using the Arrow

of Time if you would like to know more.

1187

(Refer Slide Time: 01:59)

So far with RNNs, we saw that RNNs can be used to efficiently model sequential data. RNNs use

backpropagation through time as the training method. RNNs, unfortunately, suffer from vanishing

and exploding gradients problems. To handle the exploding gradient problem, one can use gradient

clipping, and to handle the various vanishing gradients problems one can use RNN variants, such

as LSTMs or GRUs, which was good.

We saw how to use these for handling sequential learning problems. But the question we asked

now is this sufficient? Are there tasks when RNNs may not be able to solve the problem? Let us

find more about this.

1188

(Refer Slide Time: 02:58)

Let us consider a couple of popular tasks where RNNs may be useful. One is the task of image

captioning. Given an image, one has to generate a sequence of words to make a caption that

describes the activity or the scene in the image. Another example where RNNs are extremely useful

is the task of Neural Machine Translation or what is known as an NMT. It is also what you see on

your translate apps that you may be used where you try to, you have a sentence given in a particular

language, and then you have to give the equivalent sentence in a different language. Both of these

are RNN tasks.

1189

(Refer Slide Time: 03:51)

A standard approach to handling such tasks is given any input your input could be video, could be

an image, could be audio, or could be text, you first pass these inputs through an encoder network

which gets you a representation of that input which we call the Context Vector. Given this context

vector, you pass this through a decoder network which gives you your final output text. These are

known as Encoder-Decoder models, and they are extensively used in such a context.

(Refer Slide Time: 04:37)

1190

Now let us take a brief detour to understand encoder-decoder models a bit more. The standard

name for such encoder-decoder models is known as the Auto Encoder. Although in this case, it

says that the decoder is trying to encode the input itself and that is the reason why this is called an

autoencoder. Not all encoder-decoder models need to be autoencoders. However, the conceptual

framework of encoder-decoder models comes from autoencoders, which is why we are discussing

this briefly before we come back to encoder-decoder models.

And An autoencoder is a neural network architecture, where you have an input vector, you have a

network which we call the encoder network. And then you have a concept vector or we also call

that the bottleneck layer, which is a representation of the input, and then you have a decoder layer

or a network that outputs a certain vector. In an autoencoder, we try to set the target value to the

input themselves.

So you are asking the network to predict the input itself. So what are we trying to learn here, we

are trying to learn a function f parametrized by some weights and bias wb. 𝑓(𝑥) = 𝑥. Rather we

are trying to learn the identity function itself and predict an output x hat, which is close to x.

So how do you learn such a network using backpropagation? What kind of loss function would

you use? It would be a mean squared error, where you are trying to measure the error between x

and x hat, which is the reconstruction of the autoencoder. Then you can learn the weights in the

network using backpropagation as with any other feed-forward neural network.

1191

(Refer Slide Time: 06:56)

Now, the encoder and the decoder need not be just one layer, you could have several layers in the

encoder. Similarly, a several layers in the decoder in the autoencoder setting traditionally, the

decoder is a mirror architecture of the encoder. So have if you have a set of layers in the encoder

with a certain number of dimensions, number of hidden nodes in each of these layers.

Then the decoder mirrors the same architecture the other way, to ensure that you can get an output,

which is of the same dimension as the input. That is when you can measure the mean squared error

between the reconstruction and the input. However, while this is the case for an autoencoder, not

all encoder-decoder models need to have such architectures, you can have a different architecture

for an encoder, and a different architecture for a decoder, depending on what task you are trying

to solve.

1192

(Refer Slide Time: 08:00)

Just to understand a variant of the autoencoder, a popular one is known as the Denoising

Autoencoder. In a denoising Autoencoder, you have your input data, you intentionally corrupt your

input vector, for example, you can add something like a Gaussian noise and you would get a set

of values X1 hat to Xn hat, so those are your corrupted input values. Now, you pass this through

your encoder, you get a representation than a decoder and you finally try to reconstruct the original

input itself. What is the loss function here?

The loss function here would again be a mean squared error, this time it would be the mean squared

error between your output and the original uncorrupted input. What are we trying to do here? We

are trying to ensure that the autoencoder can generalize well, tomorrow at the end of training rather

so that even if there was some noise in the input, the autoencoder would be able to recover your

original data.

1193

(Refer Slide Time: 09:18)

With that, Introduction to Autoencoders, let us ask one question. In all the architectures that we

saw so far, with autoencoders, we sorted the hidden layers that were always smaller in size in

dimension when compared to the input layer. Is this always necessary? Can you go larger?

Autoencoders where the hidden layers have a lesser dimension than the input layer are called

complete autoencoders.

So you can say that such auto-encoders learn a lower-dimensional representation on a suitable

manifold of input data. From which if you use the decoder; you can reconstruct back your original

input. On the other hand, if you had an autoencoder architecture, where the hidden layer dimension

is larger than your input, you would call such an auto-encoder an over-complete autoencoder.

While technically this is possible, the limitation here is that the autoencoder could blindly copy

certain inputs to the certain dimensions of that hidden layer which is larger in size and still be able

to reconstruct, which means such an over complete autoencoder can learn trivial solutions, which

do not really give you useful performance, they may simply memorize all the inputs and just copy

inputs back to the output layer.

Then the question is are all auto encoders also dimensionality reduction methods? Assuming we

are talking about under complete autoencoders? Partially yes, largely speaking, autoencoders can

be used as dimensionality reduction techniques. A follow-up question then is then, can an

1194

autoencoder be considered similar to principal component analysis, which is a popular

dimensionality reduction method? The answer is actually yes, again. But I am going to leave this

for you as homework to work out the connection between autoencoders and PCA.

(Refer Slide Time: 11:54)

Let us not come back to what we were talking about, which was one of the tasks of RNNs which

is Neural Machine Translation, or NMT. These kinds of encoder-decoder models are also called

Sequence to Sequence models, especially when you have an input to be a sequence and an output

also to be a sequence. So if you had an input sentence, which says India got its independence from

the British.

Let us say now that we want to translate this English sentence to Hindi, what you do know is you

would have an encoder network, which would be a Recurrent neural network and RNN where each

word of your input sentence is given at one-time step of the RNN. And the final output of the RNN

would be what we call a Context vector. And this context vector is fed into a decoder RNN, which

gives you the output, which says Bharat Ko.

The rest of the sentence, Mili, and then you have an end-of-sentence token. This is what we saw

as a many-to-many RNN last week. Why are not we giving output at each time step of the encoder

RNN? For the machine translation task, if you recall, the recommended architecture, we said that

it is wiser to read the full sentence, and then start giving the output of the translated sentence.

1195

Why so? Because different languages have different grammar and sentence constructions. So it

may not be correct for the first word in English to be the first word in Hindi, or the Hindi sentence

may not exactly follow the same sequence of words in English, because of grammar, grammatical

regulations. So that is the reason why in machine translation tasks, you generally have a reading

of the entire input sentence, you get a context vector, and then you start giving the entire output in

the translated output.

(Refer Slide Time: 14:28)

Similarly, if you considered the image captioning task, you would have an image. And in this case,

your encoder would be a CNN followed by say, a fully connected network, out of which you get

a representation or a context vector. And this context vector goes to a decoder, which outputs the

caption, A woman dot, dot dot, say in the park end of the sentence.

1196

(Refer Slide Time: 14:57)

What is the problem? This seems to be working well, is there a problem at all? Let us analyze this

a bit more closely. So in an RNN, the hidden states are responsible for storing relevant input

information in RNNs. So, you could say that the hidden state at time step t or ht is a compressed

form of all previous inputs. That hidden state represents some information from all the previous

inputs, which is required for processing in that state, as well as future states.

(Refer Slide Time: 15:41)

1197

Now, let us consider a longer sequence. If you considered language processing, and a large

paragraph, if your input is very long, can your ht the hidden state at any time step encode all this

information? Not really, you may be faced with the information bottleneck problem in this kind of

context.

(Refer Slide Time: 16:07)

So, if you considered a sentence such as this one here, which has to be translated to German, can

we guarantee that words seen at earlier time steps be reproduced. at later time steps. Remember,

when you go from a language such as English, to a language such as German, the position of the

verbs the nouns may all change and to reproduce this one may have to get a word much earlier in

the sentence in English, which may follow much later in, say the German language. Is this

possible? Unfortunately, RNNs do not work that well, when you have such long sequences.

1198

(Refer Slide Time: 16:57)

Similarly, even if you had Image Captioning and related problems, such as visual question

answering, which we will see later, so if you had this image that we saw at the very beginning of

this course, and if we ask the question, what is the name of the book? The expected answer is the

name of the book is Lord of the Rings. The relevant information in a cluttered image may also

need to be preserved. In case there are follow-up questions with a dialog.

(Refer Slide Time: 17:34)

1199

So a statistical way of understanding this is through what is known as the BLEU score. BLEU

score is a common performance metric used in NLP Natural Language Processing, BLEU stands

for Bilingual Evaluation Understudy. It is a metric for evaluating the quality of the machine-

translated text. It is also used for other tasks such as image captioning, visual question answering,

so on and so forth.

And when one looks at the BLEU score, one observes that as the sentence length increases, then

while the expected curve is that you should get a high BLEU score after a certain sequence length,

unfortunately, as the sentence length goes further beyond a threshold, the BLEU score starts falling

which means using such encoder-decoder models where encoders are RNNs decoders are also

RNNs starts failing in these cases, when the sequences are long by nature. If you would like to

know more about BLEU, you can see this entry in Wikipedia for more information.

(Refer Slide Time: 18:57)

So, what, what is the solution to this problem? The solution which is extensively used today is

what is known as Attention, which is going to be the focus of this week's lectures.

1200

(Refer Slide Time: 19:13)

So what is this Attention? Intuitively speaking, given an image, if we had to ask the question, what

is this boy doing? The human way of doing this would be you first identify the artifacts in the

image. You pay attention to the relevant artifacts, in this case, the boy and what activity the boy is

associated with.

(Refer Slide Time: 19:42)

Similarly, if you had an entire paragraph, and you had to summarize, you would probably look at

certain parts of the paragraph and write them out in a summarized form. So paying attention to

1201

parts of inputs, beat images, or beat long sequences, like the text is an important way of how

humans process data.

(Refer Slide Time: 20:12)

So let us now see this in a Sequence learning problem in the traditional encoder-decoder model

setting. So this is once again, the many to many RNN setting, similar to what we saw for Neural

Machine Translation. So you have your inputs, then you have a context vector that comes out at

the end of the inputs, that context vector is fed to a decoder RNN, which gives you the outputs Y1

to Yk.

Now let us assume that head j's are the hidden states of the encoder and Sj's are the hidden states

of the decoder. So what does Attention do? Attention suggests that, instead of directly outputting

hedge T, which is the last hidden state, to your decoder RNN, we instead have a context vector,

which relies on all of the hidden states from the input. This creates a shortcut connection between

this context vector ct and the entire source input x.

How would you learn this context vector? We will see there are multiple different ways. So given

this context vector, the decoder hidden state St is given by some function 𝑓(𝑆𝑡−1), the previous

hidden state in the decoder 𝑦𝑡−1, the output of the previous time step in the decoder could be given

as input to the next time step, as well as the context vector 𝐶𝑡.

1202

(Refer Slide Time: 22:05)

And what is this context vector? This context vector is given by 𝐶𝑡, which is overall the time steps

in your encoder, RNN, 𝛼𝑡,𝑗ℎ𝑗 ,. So it is a weighted combination of all of your hidden state

representations in your encoder RNN. How do you find 𝛼𝑡,𝑗? How do you find those weights of

the different inputs? A standard framework for doing this is 𝛼𝑡,𝑗 can be obtained as a softmax over

some scoring function that captures the score between 𝑆𝑡−1 and each of the hidden states in your

encoder.

So St minus 1 gives us a current context of the output. So we try to understand what is the alignment

of the current context in the output with each of the inputs and accordingly pay attention to specific

parts of the inputs? Now there is an open question, how do you compute this score of St minus 1

with each of the ℎ𝑗’s in the encoder RNN. Once we have a way of computing that score, we can

take a softmax over ℎ𝑗 with respect to all of the ℎ𝑗’s.

So we will do this for each of the hedge j’s in the encoder RNN. And using that, we can compute

your 𝛼𝑡,𝑗 's. And using 𝛼𝑡,𝑗 ', we can compute the context vector. Once you get the context vector,

you would give the corresponding context vector as input to each time step of the decoder RNN.

How do you compute this score?

1203

(Refer Slide Time: 24:05)

There are a few different approaches in literature at this time. We will review many of them over

the lectures this week. But to give you a summary, you could have content-based attention which

tries to look at 𝑠𝑡 and ℎ𝑖. So each a particular hidden state in your decoder RNN St and a particular

hidden, hidden state in an encoder, RNN hi as cosine similarity between the two. That is one way

of measuring the score.

You could also learn weights to compute this alignment. So you can take st and hi learn a set of

weights, take a tan h and use another vector to get the score. So this is a learning procedure to get

your final score. One could also get 𝛼𝑡,𝑗 as a softmax over a learned set of weights, W and 𝑠𝑡 again.

One could also use a more general framework, where you have 𝑠𝑡
𝑇 ∗ ℎ𝑖, which is similar to cosine,

which will give you a dot product.

But you also have a learned set of weights in between, which tells you how to compare the two

vectors st and hi. Remember, any W here is learned by the network to compute the score. Or you

could simply use just a dot product by itself, which would be similar to your content-based

attention, the cosine and the dot product would give similar values. Or there is a variant known as

the Scaled dot product Attention where you use the dot product between the two vectors st and a

hi. But scale it by root n, which tells you the number of inputs that you have.

1204

(Refer Slide Time: 26:06)

What about Spatial data? So, we saw how it is done for temporal data where you had a sequence

to sequence RNN a many to many RNN What if you had an image captioning task if you had

spatial data. So, in this case, your image would give you a certain representation 𝑠0 out of the

encoder network. Unfortunately, when you use a fully connected layer, after the CNN, you lose

spatial information in that vector.

So, instead of using the fully connected layer, we typically take the output of the convolution layers

themselves, which would give you a certain volume, which let us say is mxnxc. Now, we know

that if you considered one specific patch of this volume mxnxc, we know that you can trace that

back to a particular patch of the original image which was passed through a CNN.

So you know the output feature map say a con five feature map, if you looked at one particular

path part of that depth volume, you would get a certain patch in the input image. Now, this gives

you Spatial information. So, what can we do we take this feature map that we get at the output of

a certain convolution layer, we can unroll them into 1x1xc vectors. So, you ideally have mxnxc.

So you can unroll this into c different vectors. And then you can apply attention to get a context

vector. In what way is this useful, this context vector, now can be understood as paying attention

to certain parts of the image while giving the output because each of these bands, each of these

1205

sub-volumes here highlighted in yellow is certain parts of the input image and one could now

understand the same weighted attention concept.

The alignment part of it could be implemented very similarly to what we saw on the previous slide.

But now, this represents different parts of the input image.

(Refer Slide Time: 28:35)

Another use of performing Attention is it gives you the explainability of the final model. Why so

how so? If you have said a machine translation task, you know, that when you generated a certain

output word from a decoder, RNN, your attention model or your context vector tells you which

part of the input you looked at, while predicting that word as the output, and that automatically

tells you which words in your input sequence corresponded to when or a word in your output.

So in this case, you can see that this particular sequence here European Economic Area, depended

on Zone Economic European, so that is also highlighted by these white patches here. So white

means a higher dependence. Black means no dependence. And looking at this heat map gives you

an understanding of how the model translated from one language to another.

1206

(Refer Slide Time: 29:55)

What about images image captioning task In this case too you can use the same idea, given an

image, if the model is generating a caption, you can see that the model generates each word of the

caption by looking at certain parts of the image. For example, when it says A it seems to be looking

at a particular part of the image, when it says A woman, it seems to be looking at a certain part of

the image, while the other object is also in relevance.

And if you keep going, you see when it says the word throwing, it seems to be focusing on the

woman part of the image. And if you see the word, Frisbee, it seems to focus on the Frisbee in the

image. And if you see the word Park, it seems to be focusing on everything other than the woman

and the child. This gives you an understanding and trusts the model is looking at the right things

while giving a caption as output.

1207

(Refer Slide Time: 31:03)

What are the kinds of attention one can have, you could consider having Hard versus Soft attention.

What do these mean? in hard attention, you choose one part of the image as the only focus for

giving a certain output, let us say image captioning, you look at only one patch of the image to be

able to give a word as an output. So, this choice of a position could end up becoming a stochastic

sampling problem.

And hence, one may not be able to backpropagate suit through such a hard attention problem,

because that stochastic stamp sampling step could be nondifferentiable. We will see this in more

detail in the next lecture. On the other hand, one could have Soft attention, where you do not

choose a single part of the image, but you simply assign weights to every part of the image. In this

case, you are only going to have a newer image, where each part of the image has a certain weight.

In this case, your output turns out to be deterministic, differentiable. And hence, you can use such

an approach along with standard backpropagation.

1208

(Refer Slide Time: 32:30)

Another categorization of Attention is Global versus Local attention. In global attention, all the

input positions are chosen for attention whereas in local attention, maybe only a neighborhood

window around the object of interest or the area of interest is chosen for Attention.

(Refer Slide Time: 32:55)

A third kind, which is very popular today is known as Self-attention where the attention is not with

respect to when decoder RNN with respect to the encoder, or an output RNN with respect to parts

of an image, but is of attention of a part of a sequence with respect to another part of the same

1209

sequence. This is known as Self Attention or Intra Attention. And we will see this in more detail

in a later lecture this week.

(Refer Slide Time: 33:32)

Your homework for this lecture is to read this excellent blog by Lillian Wang known as Attention?

Attention!, it is a blog on Github. And one question that we left behind, which is, is there a

connection between an Autoencoder and Principal Component Analysis? Think about it and we

will discuss this in the next lecture.

1210

(Refer Slide Time: 34:01)

References.

1211

