
Deep Learning for Computer Vision
Professor Vineeth n Balasubramanian

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Lecture 52
Backpropagation in RNNs

(Refer Slide Time: 00:22)

We will now move on to Backpropagation in RNNs. Before we go there, we left behind a couple

of questions. Can RNNs have more than one hidden layer? We already answered the question.

We said that you can have as many hidden layers as you want in each RNN block. In fact, you

could also stack RNN blocks if you like, one on top of each other. See you could have an input

that goes to one RNN block, whose output goes to another RNN block which is then given to the

output at that particular time step.

And then similarly, this RNN block would go over time. And its outputs would go to the upper

RNN block. So in such an architecture, which is also known as a stacked RNN, the weights at

each level are all shared. So at this level, all the weights are the same across all the time steps.

And at level 2, all the weights are the same across all of the time steps. Such an architecture is

known as a stacked RNN.

Going forward we asked the question, given that the state of an RNN records information from

all previous time steps, what would happen if we morph the state at a given time too much with

the current input?

1135

(Refer Slide Time: 01:57)

The answer is evident here again, the effect of previous time steps will be reduced, which may

not be desirable for sequence learning problems.

(Refer Slide Time: 02:10)

Moving on now to backpropagation in RNNs let us first revisit the forward pass in RNNs

assuming that this is now your diagram for visualizing an RNN you have an input x weights U

hidden state h weights W then weights V that take you to an output , then your forward pass𝑦

equations are given by .ℎ
𝑡

= 𝑡𝑎𝑛ℎ(𝑈𝑥
𝑡

+ 𝑊ℎ
𝑡−1

)

1136

And . This would be your forward pass equations. For an RNN that solving𝑦
𝑡

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉ℎ
𝑡
)

a classification problem where you have the output layer defined by a softmax. What is the cross

entropy loss in this setting, you could have used, because it is a classification problem, you could

have the standard cross entropy loss as given by this formula.

(Refer Slide Time: 03:20)

Now, if we want to compute the gradients of error E with respect to the 3 sets of weights that we

have here; U, V, and W, let us assume that these gradients are going to be used to update the

weights using stochastic gradient descent exactly the same way we did this for feed forward

neural networks, or CNNs.

And it is also important to keep in mind that depending on the kind of RNN variant that you are

using, you could have an error in each time step. If you had a many to one setting, you may have

an error only at one time step. But in a more general case of an RNN, you could have an error for

your output at every time step. So you could have an error at time step t = 0. Similarly, at𝐸
0

𝐸
1

time step t = 1, and so on and so forth, in this case till .𝐸
4

The question now is, how do you compute the gradient of the error with respect to U, V and W?

How do you do this? It is similar to the general principle of computing the gradient for any other

neural network. If a weight influenced an output through multiple paths, then you have to sum up

1137

the contribution of that weight to the output along all possible paths. In our case, you would have

a weight here, here, here, here for all the time steps.

And all of them are the same weights in an RNN. So if we had to compute , where E is an∂𝐸
∂𝑊

overall error, would be given by where is the error at each time step. So our next∂𝐸
∂𝑊

𝑡
∑

∂𝐸
𝑡

∂𝑊 𝐸
𝑡

question boils down to how do you compute each of these . Let us see that now.
∂𝐸

𝑡

∂𝑊

(Refer Slide Time: 05:35)

Before we go into computing let us take a simpler case, and try to compute . In particular,
∂𝐸

𝑡

∂𝑊

∂𝐸
𝑡

∂𝑉

let us consider , which is, let us say the third time step. So to compute , let us assume that
∂𝐸

3

∂𝑉

∂𝐸
3

∂𝑉

we can write to be then the gradient can be computed as will be . Now is a𝑧
3

𝑉ℎ
3

∂𝐸
3

∂𝑉

∂𝐸
3

∂𝑦
3

∂𝑦
3

∂𝑉 𝑦
3

softmax of . That is the way we have defined this network.𝑧
3

So you would have this by chain rule as . Now, this assuming that you have a linear
∂𝐸

3

∂𝑦
3

∂𝑦
3

∂𝑧
3

∂𝑧
3

∂𝑉

activation function, or let us assume that this activation function is trivial, and let us assume that

, if you use mean squared error or cross entropy, let us assume that it boils down to a simple
∂𝐸

3

∂𝑦
3

1138

, where is the predicted output and is the expected output and would be ,𝑦
3

− 𝑦
3

𝑦
3

𝑦
3

∂𝑧
3

∂𝑉 ℎ
3

because of the definition of itself.𝑧
3

This becomes the gradient for so you would sum up and so on and so
∂𝐸

3

∂𝑉

∂𝐸
3

∂𝑉 +
∂𝐸

2

∂𝑉 +
∂𝐸

1

∂𝑉

forth to get the gradient of the overall error with respect to V. Once you compute that, you can

update all the weights in V using gradient descent.

(Refer Slide Time: 07:39)

Now, let us move on to the next case, which is . Recall again that in RNNs we have U, V and
∂𝐸

3

∂𝑊

W. We need to compute the gradients of the error with respect to each of them. So, let us say we

have to compute , that would now be written as very similar to what we wrote for V,
∂𝐸

3

∂𝑊

∂𝐸
3

∂𝑊

would be which is the W that you have coming into it from the previous layer. The
∂𝐸

3

∂𝑦
3

∂𝑦
3

∂ℎ
3

∂ℎ
3

∂𝑊

question now is, is this good enough? If we now took this quantity, and summed up
∂𝐸

3

∂𝑊 +
∂𝐸

2

∂𝑊

and so on. Would we have solved overall?
∂𝐸

3

∂𝑊

1139

(Refer Slide Time: 08:42)

Unfortunately, no, because while depends on W , also depends on , which in turn∂ℎ
3

∂ℎ
3

ℎ
2

depends on W again, which means chain rule needs to be applied again to be able to complete

this computation of . Why did we not need this with V? Because we did not have this
∂𝐸

3

∂𝑊

problem because it was directly connecting h to the error. So, how do we complete this?

(Refer Slide Time: 09:19)

1140

So, depends on W via , and all other earlier hidden states. So which means can beℎ
3

ℎ
2

ℎ
1

∂𝐸
3

∂𝑊

written as; . What about ? We are going to leave that as homework
𝑘=0

3

∑
∂𝐸

3

∂𝑦
3

∂𝑦
3

∂ℎ
3

∂ℎ
3

∂ℎ
𝑘

∂ℎ
𝑘

∂𝑊

∂𝐸
3

∂𝑈

because it is going to be very similar to , you only have to apply the chain rule in a principled
∂𝐸

3

∂𝑊

manner. Just to complete this discussion, so, if one had to look at this, how would it look in

expansion?

It would look like and you will have further summations
∂𝐸

3

∂𝑦
3

∂𝑦
3

∂ℎ
3() ∂ℎ

3

∂𝑊 +
∂𝐸

3

∂𝑦
3

∂𝑦
3

∂ℎ
3() ∂ℎ

3

∂ℎ
2

∂ℎ
2

∂𝑊

that do similar chain rules for and so on and so forth. Remember, this summation now is onlyℎ
1

for , you will have, similarly another summation for so on and so forth. And your
∂𝐸

3

∂𝑊

∂𝐸
4

∂𝑊

∂𝐸
2

∂𝑊

final gradient for W has to add up all of those to compute .
∂𝐸

∂𝑊

(Refer Slide Time: 11:20)

So, if you now observe when k = 1 as we just said, can be expanded as would be
∂ℎ

3

∂ℎ
𝑘

∂ℎ
3

∂ℎ
1

. So, this entire gradient can now be succinctly written as .
∂ℎ

3

∂ℎ
2

∂ℎ
2

∂ℎ
1 𝑘=0

3

∑
∂𝐸

3

∂𝑦
3

∂𝑦
3

∂ℎ
3 𝑗=𝑘+1

3

∏
∂ℎ

𝑗

∂ℎ
𝑗−1() ∂ℎ

𝑘

∂𝑊

1141

(Refer Slide Time: 12:08)

Do you see any problem in this particular approach? If you thought carefully, you will realize

that RNNs are often used for time series data that can be reasonably long. You could be using it

for data that has 20 time steps, 50 time steps, 100 time steps depending on the nature of the

problem that you are dealing with.

So when you now back propagate, you are going to be multiplying the gradients across all of

these time steps. So if you saw in the slide earlier, you would have this term which continues to

multiply these activations across multiple time steps. Now, why could that cause a problem? If

your gradient for each of those values is less than 1, multiplying these terms will lead to a

1142

vanishing gradient problem, because the multiplication of values less than 1 will quickly go to 0.

Is this really a problem?

(Refer Slide Time: 13:15)

Let us consider, say, a sigmoid activation function that we use in a layer in the RNN. So we

know that the sigmoid function is upper bounded by 1, the values lie between 0 and 1. Let us,

even if we took a tanh activation function, it would lie between -1 and 1. So the gradient of the

sigmoid activation function, it is also upper bounded by 1 which means all these terms will have

gradients which are upper bounded by 1.

1143

And what does that tell us? It means that the gradients in this particular computation will
∂𝐸

3

∂𝑊

quickly vanish over time. And an earlier time step. The weights or the impact of an earlier time

step may never be felt on a later time step. Because the gradients that you get due to an earlier

time step, it is most likely will become 0 because of this product over a long range of activations

across many time steps.

So effectively, although you want RNNs to model long term temporal relations, you may not

really be able to achieve that purpose because of the vanishing gradient problem, because an

earlier time step may not really influence an output at a later time step. How do you combat this

problem? We will see this in the next lecture. There are already solutions for this problem. And

we will see this in the next lecture.

(Refer Slide Time: 14:56)

But before we go there let us ask the counter question. What if I did not use a sigmoid activation

function? What if I just use the linear activation function let us assume, on the contrary, that each

of my gradients were very high values, then multiplying all of them could lead to what
∂ℎ

3

∂ℎ
2

,
∂ℎ

2

∂ℎ
1

is known as the exploding gradient problem, because the product of values, say in the range of

10, by multiplying 3 such values, you will quickly go to magnitude.103

1144

And that can lead to an explosion,exploding gradient problem. This generally is not too much of

an issue during implementation. Can you think why this may be the case? The answer is, firstly,

it is likely to show up as NaN, not a number during implementations. And more importantly, you

can simply clip the gradients beyond a particular value.

This is known as gradient clipping. And it is very popularly done today, while training neural

networks, where you say that if the gradient exceeds 10, you are going to stop the maximum

value it can obtain as 10. So even if your gradient was , you are only going to choose it as 10103

and move on with the rest of the computations. This generally takes care of the exploding

gradient problem, although the vanishing gradient problem remains, and we will see this in the

next lecture.

(Refer Slide Time: 16:40)

So your homework for this lecture is, continue to read chapter 10 of the Deep Learning book,

and also go through this excellent WildML RNN tutorial by Danny Britz, which explains

backpropagation and RNN very very well. The question that we are going to leave behind at the

end of this lecture is, as I just mentioned, in the next lecture, we will see how you can change an

RNN architecture to avoid the vanishing gradient problem.

But can you solve or address the vanishing gradient problem, without any change in the overall

architecture? Through some choices, can you solve the vanishing gradient problem? Think about

it and we will discuss the next time.

1145

(Refer Slide Time: 17:33)

The references.

1146

