
Deep Learning for Computer Vision
Professor. Vineeth N Balasubramaniam

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Lecture No. 47
CNNs for Segmentation

Having seen detection, we now move on to segmentation of images using CNN architectures.

(Refer Slide Time: 0:26)

We will quickly review the exercise from the previous lecture. Given two bounding boxes in an

image, an upper left box, which is and a lower right box, which is and overlapping2 × 2 2 × 3

region of . What is the IOU? This should be a simple one. So, you have an upper left,1 × 1

which is and then you have a lower right which is with a overlap. So, the2 × 2 2 × 3 1 × 1

total number of boxes here are 9 of which the intersection is one box. So, your overall IOU

would be 1/9.

And the second question, consider using YOLO on a grid, 20 classes, five anchor19 × 19

boxes, the output volume would be, remember we said it is

. And that is the final𝑆 × 𝑆 × 5𝐵(𝑡ℎ𝑎𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑜. 𝑜𝑓 𝑎𝑛𝑐ℎ𝑜𝑟 𝑏𝑜𝑥𝑒𝑠) + 𝐶(𝑛𝑜. 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠)()

answer you get. We assume here that C, the number of classes, also includes the background. If

you want to have background as a separate class, then you will have to add C to be 21.

1013

(Refer Slide Time: 1:47)

So, let us recall image segmentation in the first place. Early on in the lectures, we talked about

different image segmentation methods such as Watershed, Graph Cut, Normalized Cut, Mean

Shift, so on and so forth. To an extent, these methods inspired early versions of CNN

architectures for tasks such as detection and segmentation. In fact, R-CNN, which uses selective

search to get region proposals, in fact used a min-cut segmentation method known as CPMC

(Constrained Parametric Min Cuts) to generate the region proposals. But we will now move on to

deep neural networks for segmentation.

1014

(Refer Slide Time: 2:36)

So, the task at hand for us to start with is going to be semantic segmentation, where we would

like to assign a class label to every pixel in the image. How do you solve this problem using

neural networks, in particular, convolutional neural networks? We are going to cast this as a pixel

wise classification problem. While, so far we spoke about image level classification where we

had only a label at the level of an image that we went to detection where we had labels at the

levels of bounding boxes, where we not only gave class label, but also an offset to the bounding

box to make a final prediction.

But in semantic segmentation, we are going to classify at the level of every pixel. So, for each

image, each pixel has to be labelled to the semantic category. So, you can assume that creation of

a dataset for semantic segmentation is very annotation intensive. There have been various

architectures in recent years, such as FCN, SegNet, U-Net, PSP Net, DeepLab, Mask R-CNN.

We will cover each of them in this lecture.

1015

(Refer Slide Time: 3:58)

Starting with FCNs or Fully Convolutional Networks for Semantic Segmentation, which was

proposed in 2015 and 16, they adopted various classification networks such as VGG net,

GoogleNet so on and so forth into fully convolutional networks by converting the FC layers into

layers. We saw that with single shot detection methods, it is the same idea here because1 × 1

for semantic segmentation you still have to classify at the level of a pixel. So you do not want to

move away from the convolutional region.

What do we do to obtain classification for each pixel? We can have convolutional layer at1 × 1

the end of any CNN. And have C+1 channels in that final output volume where C is the number

of classes and the +1 is for, say, a background class. But do you see any problem with this

approach? There is a problem when you use convolutional layers, which is, all standard CNNs

keep down sampling as you go further down the layer, be it through convolution or through

pooling, which means your output feature maps are not going to be the same size as your input.

But we finally want to give a pixel level label in the input resolution, in the input images

resolution. So, what do we do? We already know the answer. We can upsample after a certain

stage. So, you have convolutional layers and after a certain stage you upsample and bring the

feature maps to the same dimension as your input image. How do we upsample? One of the

methods that we have discussed before is transpose convolution.

1016

(Refer Slide Time: 6:00)

Let us quickly recall transpose convolution. So, this was the one dimensional example we spoke

when we discussed convolutional neural networks. So, where your output can be larger than your

input.

(Refer Slide Time: 6:15)

And here is the illustration that we gave for transpose convolution where you have a dilation in

your convolution when you take the filter and apply it on an input image. Because there is a

dilation, transpose convolution is also known as dilated convolution, or it is also sometimes

1017

referred to as Atrous convolution, as we will see a little later because it dilates when you perform

the convolution.

(Refer Slide Time: 6:51)

So, now in FCNs, this is the idea that is used to upsample after a certain level. Let us see an FCN

architecture with a VGG backbone. So, if you have a VGG-16 backbone, the first thing that was

done in FCN is to remove all the fully connected layers. So, what you have now are only the

convolutional layers of VGG-16. So, you can see all the standard feature maps of VGG-16. The

3 FC layers are replaced with 1D convolutional layers. And the last 1D convolutional layers has

C+1 filters.

So, you can see here the last one has 21 dimensional filters. This was applied on a dataset that

had 20 classes. So, that was 21 dimensional. However, you notice here that while you have 21

channels, the output is still smaller in size when compared to the input resolution. So, you finally

have one upsampling layer which is done using transpose convolution to get back to the original

size. This is what was done in fully convolutional networks. However, is transpose convolution

the only way to obtain the upsampling? Not necessary. We can do several things, including skip

connections, which we will see later.

1018

(Refer Slide Time: 8:19)

But before we go there, we will talk about another method that came around the same time as

FCNs known as SegNets. SegNets are what you see here in the image. You have an input image,

you have an output and the architecture is a fully convolutional encoder decoder architecture.

How does, how is this different from FCNs? Very similar to FCNs. The encoder is VGG-16

without FC layers. The decoder maps the low resolution encoder feature maps to input

resolution. Here, there is a difference from FCN.

FCN had only one upsampling layer towards the end, whereas SegNet has a sequence of decoder

layers which mirror the architecture of your encoder. So, the encoder and decoder architectures

are mirrors of each other. The important contribution in SegNet was to avoid transpose

convolution in upsampling. So, how does SegNet do the upsampling in that case? It actually uses

the pooling indices that were obtained in the encoder layers and uses them to be able to

upsample.

1019

(Refer Slide Time: 9:40)

Let us see how this is done. So, if you had an output map from a particular decoder stage, we

used a max pool indices from the original encoder. So, let us assume the maxpool indices were

00, 10, 10, 01. So, a would go to the 0, 0th location, which would be the top left. b would go to

the 1 0th location, which would be the bottom left. c would go to the 1, 0th location, which

would be the bottom left and d would be 0, 1 which would be top right. Now this becomes an

upsampled version of a previous layers output map in the decoder. And one can continue to do

this to get your final upsampled image.

What do we mean by max pool indices, in your encoder, whenever you had a pooling layer you

keep track of the indices of which of those entries in patch or patch, depending on2 × 2 3 × 3

what pooling you are doing, you store the winning indices in a separate memory buffer and we

are going to use that max pool indices to upsample back to higher resolutions. Why is this good?

Storing max pool indices is more efficient than storing full feature maps of the encoder. And in

each stage of the decoder, the max pooling indices of the corresponding encoder is used to

produce the upsample feature maps.

So, if you see the complete image, the pooling indices of this encoder feature map goes to this

decoder, this encoders feature map goes to this decoder and so on and so forth. What is the loss

function? So, we have seen a couple of architectures now, FCNs and SegNets, what would one

1020

use as a loss function to train such networks? Simple, it is the sum of pixel wise cross entropy

losses. Remember, in both FCN and SegNet, your output is going to be a volume which would

be the size of the input resolution, but the number of channels would be the number of classes+1

for background.

So, you can actually have for each pixel, a vector of probabilities, which is in the output value.

Now you could compute the pixel level cross entropy for each pixel. You can sum all of them up

and that becomes your loss function, which because is a sum of cross entropies will remain

differentiable.

(Refer Slide Time: 12:23)

A third kind of architecture, which also came in the 2015-16 time frame, is known as U-net.

U-Net is also a fully convolutional, encoder decoder architecture. But it introduces the concept of

skip connections in a different way from SegNet. In the contracting path, that is the encoder path

is an existing classification network with FC layers removed similar to SegNet and FCNs. But in

the expanding path, in addition to upsampling of feature maps, the network also receives

corresponding feature maps of the contracting path along with further convolutional layers.

Finally, at the end, you have a convolution with C+1 channels where C being the number1 × 1

of classes. The Upsampling in U-Net is performed using transpose convolution, transpose2 × 2

convolution with stride 2 and padding 0. And the number of feature channels are halved in each

1021

upsampling step. Which means the total input dimensions will double now with the 2 × 2

transpose convolution and channels being halved, the total input map dimensions will double at

this time. So, the original unit architecture unpadded convolutions are performed, which means

the output segmentation is smaller than the input by a constant border width.

(Refer Slide Time: 14:00)

Let us look at the visual. So, here is the U-Net and the shape of it tells why it is called the U-Net

architecture. You can once again see the contracting path is similar to any other architecture

without FCN layers. And in the expanding path in addition to doing transpose convolution at

each step, you also receive the corresponding feature maps of your contracting part, which is

added to your expanding path. So, that gives a localization information from the encoder to each

step of the decoder beyond just upsampling. So, you get additional information from the

corresponding layer of the encoder rather than rely only on upsampling as in SegNet or FCNs.

1022

(Refer Slide Time: 14:57)

U-Net was originally proposed for biomedical image segmentation. It was, in fact, published in a

medical conference, Mechai. How do you think this can affect the learning of the unit model?

Biomedical image segmentation has some unique challenges, firstly, often you do not have

training datasets which are of the order of 1 million or even tens of thousands. Very few training

images may be available. So, this particular work employed excessive data augmentation by

applying elastic deformations to available training images, which was one of the contributions.

Another challenge in the medical domain is there could be many objects of the same class

touching each other because there could be objects which are similar to each other placed next to

each other. So, U-Net also proposes a loss function which penalises pixels closer to edges more

than pixels away from edges. Edges are extremely critical for medical image segmentation. Over

the years, there have been several variants of U-Net, mostly by changing the architecture, by

replacing the convolutional blocks with dense blocks and increasing the depth of the U-Net, so

on and so forth.

1023

(Refer Slide Time: 16:30)

Another network used for segmentation is known as the PSPNet. And the PSPNet starts by

asking the question, What challenges could you face if you applied FCNs on complex scenes? If

you think deeper, you would notice that FCNs do not learn patterns that are co-occurent. For

example, we know that cars are on roads while boats are on rivers. And FCNs (may) can also

predict parts of an object as different categories. For example, it can look at a skyscraper and

think pixels belong to different buildings because of the sheer scale of that object.

Thirdly, FCNs could fail to detect large objects or small objects, depending on the architecture

and the receptive field employed in the architecture. So, how can we address some of these

constraints? PSPNet hypothesizes that one should use global context information to improve

segmentation performance. So, how do you get global context information? Segment at multiple

scales. So, when you segment at a lower resolution, you are actually trying to bring more global

information into the segmentation result.

1024

(Refer Slide Time: 18:15)

So, PSPNet introduces a pyramid pooling module where, given an image, you forward propagate

it through a CNN and then there is a pooling layer that pools at multiple scales. What are the

different scales? There is a coarse scale which is simply a global average pooling. So, this will be

, where C are the number of channels. And each successive pooling level gives1 × 1 × 𝐶

increased localized information, localisation information. So, you would have your pooled

outputs to be . That is the global average pooling. So, each of the C channels here in1 × 1 × 𝐶

the convolutional output feature map, you would take that channel, global average pool and get

one scalar.

And for each of these C channels you would get . Similarly ,1 × 1 × 𝐶 2 × 2 × 𝐶 3 × 3 × 𝐶

and . And those are the 4 scales that PSPNet employs. Remember that when you do6 × 6 × 𝐶

pooling, typically the number of channels do not reduce. You operate channel wise.

1025

(Refer Slide Time: 19:39)

So, once these 4 scales pooling is done, the PSPNet now applies a convolutional 1 × 1

convolution on each of these maps that came from the pooling operations to reduce the number

of channels in the output. By how much does each of these convolutions reduce the1 × 1

channel size? By one fourth. There is a reason for that. The reason is, once these 1 × 1

convolutions are performed, all of these are upsampled and concatenated, so each of these pooled

maps are upsampled using simple bilinear interpolation and then they are concatenated. And this

concatenated volume is going to have the same number of channels as the original feature map.

Once this is done, this is then sent through a convolutional layer to get your final prediction of

segmentation.

1026

(Refer Slide Time: 20:46)

Another method is known as DeepLab which is a popular method for semantic segmentation

which is similar to PSPNet. In this case, the image goes through several blocks of convolution.

And then instead of having a pooling layer, which splits the image into 4 different scales, it

performs Atrous Spatial Pyramid Pooling. So, this module is known as the ASPP module.

Remember, Atrous convolution is the same as dilated convolution or transposed convolution, or

sometimes even called fractionally strided convolution.

So, when your stride is less than one. So, then you get the same effect as performing pooling at

multiple scales. So, Atrous spatial pyramid pooling, you could say, is a different way of

implementing your pyramid pooling module in PSPNet. So, once you do your Atrous spatial

pyramid pooling, you once again upsample, concatenate and you finally get your result on that

concatenated volume.

1027

(Refer Slide Time: 22:00)

DeepLab has gone through a few different versions over the years, and one of the more recent

versions, known as DeepLab V3, adds a few modules to the basic DeepLab architecture. In this

DeepLab V3 module, image level features are also passed on to the ASPP module. There is batch

normalization which is used for easier training. And there is also an entire decoder architecture

which is used to refine the segmentation results. So, you can see here that you have the ASPP

module using which you perform convolution, convolution, so on and so forth.1 × 1 3 × 3

You get a set of feature maps which are concatenated. convolution is done to reduce the1 × 1

depth of those channels and that is then upsampled by 4 and passed on to the decoder along with

the output of the ASPP module. These are then concatenated and you finally have one more

convolution at the end and then upsample and make your predictions at the end. Remember that

this predict, when we say prediction, it is going to be again an output volume, whose resolution

is the same as the input image and the number of channels would be C+1 where C is the number

of classes, +1 for background.

1028

(Refer Slide Time: 23:34)

Moving on from semantic segmentation, instance segmentation is a slightly more challenging

task than semantic segmentation.

(Refer Slide Time: 23:52)

In semantic instance segmentation or what is popularly known as instant segmentation, Our goal

is to not only give a class label for every pixel, but to also assign an object ID for each of the

objects. So, if there are multiple people or multiple chairs or multiple dogs, you will want to also

separate those people, the instances of the people and instances of the dog, which the basic

1029

semantic segmentation task did not consider. In semantic segmentation, a dog would be a dog

pixel whether there were 2 dogs or 3 dogs or 4 dogs, all of them would just be classified as dog.

But in instance segmentation we want dog 1, dog 2, dog 3 and dog 4. And the challenge here is

you may not know the number of dogs which is similar to the detection problem.

Which is why one of the most popular approaches, for instance segmentation known as Mask

R-CNN actually tries to improve upon faster R-CNN to achieve instance segmentation. So, Mask

R-CNN was proposed in ICCV of 2017. And it uses a faster R-CNN like architecture but adds a

branch to also mask out and get instance level segmentation. So, you could look at mask R-CNN

as faster R-CNN with FCN on the regions of interest, it adds a parallel head. Along with your

SVM object classifier or simply your classification module and your bounding box offset

regressor, you now add a mask predictor that is a third head.

(Refer Slide Time: 25:42)

An important contribution in mask R-CNN to be able to achieve the mask accurately was a

module known as RoIAlign. And since mask R-CNN operates in the framework of Faster

R-CNN, the main limitation of Faster R-CNN that this module addresses is that when you map

object proposals to feature space, recall that both in fast R-CNN and faster R-CNN. You had

certain object proposals and you map them to a certain feature space.

1030

And feature space could be of a different resolution than the resolution in which you obtained

your object proposals. In both Fast R-CNN and faster R-CNN, we simply warp it to the size

required and then bring your object proposals to that dimension. However, when you do

something like this, you could face errors due to quantization. Why does this matter? This

matters because one pixel in feature space could be equivalent to many pixels on an image

because the feature space is smaller in later convolutional layers when compared to the initial

input.

When you try to get a mask, these few pixels can bring a significant error in the final

performance. So, how do we overcome this problem? RoI align performs bilinear interpolation to

get the exact coordinate for the locations where the object proposals match to a given feature

map. This preserves translation equivariance of masks.

(Refer Slide Time: 27:48)

What do we mean? We mean that given an image where an object could be located in this yellow

box or red box, both could be valid detections. But the mask position in each of these bounding

boxes is different. So, by translation equivariance, we mean that if the object has moved by a

certain amount inside the bounding box, the mask also has to move by certain, by the same

amount. And this can be achieved by the RoI align layer.

1031

(Refer Slide Time: 28:23)

So, the way RoI align does it is, when you convert your object proposals to locations on your

feature map, if the location turns out to be in between a few pixels on your feature map, then you

perform bilinear interpolation of the pixels around the feature map and then you get your specific

pixel value at that specific point pointed by the object proposal. And that is what is then pooled

to get your fixed dimensional representation that goes to later layers of your faster R-CNN

architecture.

(Refer Slide Time: 29:08)

1032

So, in addition to your standard faster R-CNN architecture, with the classification loss and a

bounding box loss, we also have a mask head with the mask R-CNN. And what the mask

R-CNN does is, it uses an FCN kind of a branch. So, which means it is fully convolutional. And

for each RoI the mask size is 28 cross 28, as you can see here. And it is finally rescaled to the

bounding box size and then overlaid on the image during inference. So, this mask as you can see

here is obtained for every RoI and then finally overlaid back on input image at inference time.

(Refer Slide Time: 29:55)

A last and more recent form of segmentation that is popular is known as panoptic segmentation.

Panoptic segmentation combines semantic segmentation and instance segmentation. So, semantic

segmentation, as you can see, is where you segment the pixels of all objects. But all instances

remain the same. Instance segmentation is where you only care about the instances of the objects

in your categories, but you label each instance separately.

And panoptic segmentation is the union of the two where you label every pixel as belonging to

different objects. And you also ensure that each instance of an object gets a different label

altogether.

1033

(Refer Slide Time: 30:52)

So, how do you perform panoptic segmentation? So, this work was first introduced in CVPR of

2019, about a year old. And one could achieve panoptic segmentations using a couple of

architectures. So you could perform Mask R-CNN to get instance segmentation results. You

could do a dilated FCN to get semantic segmentation results and then you merge the two to get

panoptic segmentation. That is one approach. So, this particular work actually implements a

couple of approaches and then studies how this needs to be evaluated differently.

(Refer Slide Time: 31:31)

1034

So, another approach is you could take a feature pyramid network instead of what we saw here.

Instead of using a dilated FCN or a mask R-CNN, You could use an FPN, a feature pyramid

network and then send those detections through a mask R-CNN head to get your instance level

segmentations. And you could also send those different feature maps through a pixel level

recognition head to your semantic segmentation. So, in both these approaches, there is an

instance segmentation pathway and there is a semantic segmentation pathway which are

combined to give your panoptic segmentation. What would be the loss function here? The loss

function recommended is a combination of both semantic segmentation and (panoptic) and

instance segmentation.

Remember that instance segmentation the way we saw with mask R-CNN has three losses

classification, bounding box and the mask loss. And then for semantic segmentation, you have

your standard pixel wise cross entropy loss.

(Refer Slide Time: 32:46)

One of the challenges of panoptic segmentation is that it cannot be evaluated using the metrics

one may use for semantic segmentation or instance segmentation. Why is this so? In semantic

segmentation, we use IoU and per pixel accuracy. So, you can try to see if you do a set of pixels

that belong to a particular object, you could try to get the intersection over union with the ground

truth of that object. You could also get a per pixel accuracy because you are going to predict

1035

probabilities at each pixel level for all the classes that you have. You can also look at that

accuracy as a metric.

On the other hand, for instance segmentation, which is similar to detection, you would have

average precision over different IoU thresholds. Why cannot we use these for panoptic

segmentation? That is because this could cause asymmetry for classes with or without instance

level annotations. Remember that in panoptic segmentation you could have certain classes,

where there are multiple instances. For example, people or dog, and there could be certain

classes such as sky, road which may not have many instances. So, to combine these metrics

without considering these asymmetries may not be wise.

(Refer Slide Time: 34:28)

So, this particular work recommends a new metric known as the PQ metric. How does the PQ

metric work, you can look at this example here. Let us assume that this is your correct ground

truth. So, there is sky, there is grass, there are three people. That is the instance segmentation part

of it and then there is a dog. Let us assume now that whatever module we came up with predicted

it this way.

The sky, it got it right. The grass, it got it right. The dog became person. And instead of three

people, it only predicted two people where it combined two of these people. So, how do you now

measure error of this kind of a system? So, the way this approach recommends is, you first write

1036

out all your true positives, which would be your two people, which are true positives between

your ground truth and prediction. There is a false negative, which is the person you missed and

there is a false positive, which is the person you added instead of a dog.

So, for a ground truth segment g and for a predicted segment p, the P Q metric is computed as

 (𝑝,𝑔)ϵ𝑇𝑃
∑ 𝐼𝑜𝑈(𝑝,𝑔)

𝑇𝑃| |+0.5 𝐹𝑃| |+0.5 𝐹𝑁| | = (𝑝,𝑔)ϵ𝑇𝑃
∑ 𝐼𝑜𝑈(𝑝,𝑔)

𝑇𝑃| | × 𝑇𝑃| |
𝑇𝑃| |+0.5 𝐹𝑃| |+0.5 𝐹𝑁| |

So, the first term here gives the segmentation quality. Among the true positives, What was the

IOU for all of your segments? And the second part gives the recognition quality as to among all

of your possible segments, how many of them did we get as true positive? So, you have a part of

it that checks for segmentation quality and a part of it that checks for recognition quality and that

is why this metric becomes useful for panoptic segmentation.

(Refer Slide Time: 37:07)

For more details, please read a good overview of semantic segmentation by Nanonets, a good

overview of Deep lab semantic segmentation method, which is a popular one at analytics Vidhya

and also a good introduction to panoptic segmentation.

1037

1038

