
Deep Learning for Computer Vision
Professor. Vineeth N Balasubramanian

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Lecture No. 44
CNNs for Object Detection-I

We have so far seen neural networks in its most simplest form, feed forward neural networks,

learnt back propagation, seen how different variants of gradient descent can be used. Learnt a

few practical tricks while training neural networks, we then moved on to convolutional neural

networks, the building blocks of computer vision. We saw how they can be trained using back

propagation, we saw various kinds of architectures in CNNs.

And then we also saw last week on how one can visualize and understand what CNNs are

learning as well as explain their predictions. But in all these lectures so far, we focused on the

task being classification, given an image our objective was to classify what object was in the

image. You could extend that to regression where you predict a real value by changing the

cross entropy loss to a mean square error.

However, there are many other kinds of vision tasks that are possible and we will now move

on to those tasks in this week. We will start with one of the most used tasks today which is

object detection.

(Refer Slide Time: 1:38)

So the difference between classification, localization and detection is as follows. In

classification, given a cat in an image, the objective is to say that there is a cat that

943



corresponds to the image. In localization, in addition to saying that there is a cat you also

have a bounding box around the cat to say where in the image the cat was located. In object

detection, you go one step further and you detect all possible occurrences of the objects in

your set of classes in a given image as well as localize them. In the localization task, there is

only one object which you localize whereas in object detection there could be multiple

objects, multiple instances of the same object, you could have a cat and a dog or two dogs

and one cat all of these possibilities.

The objective here is to recognize each of these objects as well as localize them using these

kinds of bounding boxes. Finally, the task of segmentation where the job is to label each pixel

as belonging to one of say c classes depending on the number of classes we have. So, we will

start this lecture with detection and then move on to segmentation as well as other tasks later

this week.

(Refer Slide Time: 3:17)

Before deep learning came into the picture, there were other methods that were used to

deploy computer vision for object detection on various devices. So, object detection and face

detection were even available in say point and shoot cameras 15 years ago when deep

learning methods had still not matured. Most of those methods used a variant of what is

known as the Viola-Jones Algorithm, this was developed by Viola and Jones and that is the

reason for the name and this work was published in CVPR of 2001.

944



And this is a framework to perform object detection in real time. It was primarily used for

detecting frontal upright faces although it was adapted to be able to detect other kinds of

objects or even detect parts of objects such as say eye detection on a face. The main

contributions of this work was they performed weak classification using what are known as

Haar-like features. We will see what these are in the next slide and they also introduced a

very powerful idea known as integral images which helps make computations of such

haar-like features significantly faster as we will see.

Then they used Adaboost as the classifier of choice but how they used Adaboost was slightly

different from the traditional formulation in machine learning and they also used this as a

cascade of classifiers as we will see over the next few slides.

(Refer Slide Time: 5:07)

Haar features are rectangular features based on haar wavelets, so these are, this is how the

haar features look like. So, you can see here that there are generally a region of black and a

region of white but there could be different combinations of those you could have just two

regions white and black horizontally aligned vertically arranged or you could have a black

sandwiched between a white vertically or horizontally or you could have checkerboard

patterns and you can keep going forward you will get various kinds of patterns as you use the

same idea.

So, the idea behind the haar filter is, the feature value is given by the sum of the pixels in the

white rectangles subtracted from sum of the pixels in black rectangles. Remember this is

945



convolution, so things would get flipped which is why you have the output of convolving

with a Haar filter would be the sum of the pixels inside the black rectangle minus the sum of

the pixels inside the white rectangle, remember black is 0 white is 1 but because of the

flipping this is what the output would turn out to be.

And to normalize for images of different scales, these features could be scaled through

height, through width or even different kinds of patterns as we will see. So, you could have a

filter, a filter. You could have a filter so on and so forth. You could6 × 4 10 × 6 10 × 24

have them of various sizes depending on what you are applying these haar wavelets for.

(Refer Slide Time: 6:52)

So, the intuition of using haar features for object detection or face detection in particular is

that a lot of the features of the human face are about contrast between a certain region and the

adjacent region. So, for example, if you looked at the eye region as you can also see here, it is

likely to have a black area below and a reasonably brighter intensity area right above that. So,

Haar features such as this would capture that difference. You could also look at eyes the other

way and represent them and capture eyes using a white block sandwiched by two black

blocks in a Haar wavelet. So, these are likely to be good feature detectors of parts of the face.

946



(Refer Slide Time: 7:44)

As I just mentioned, this work also introduced the idea of what is known as an integral image

this is a fundamental concept not necessarily anything to do with face detection, it is a way of

making computations faster especially when you use haar-like features but this was

introduced in this particular work by Viola and Jones for doing object detection.

So, let us see what an integral image is? So, the idea is to reduce computational complexity

when you are adding pixel intensities for whatever option and the integral image is defined

as, for any pixel in the integral image you sum up all the pixel values up till that point starting

from the origin on the top left and the summation of all the pixel intensities is what is filled at

a particular location.

So mathematically, you could write it as, integral image at x,y location would be the

where x is the current x location, y being the current y location. So, you add
𝑥'≤𝑥,𝑦'≤𝑦

∑ 𝑖 𝑥', 𝑦'( ) 

up all the pixel values until that particular pixel that you are looking at and the sum of all of

those intensities is what you fill in at that pixel in the integral image. So, given this kind of an

image, the integral image would look like this. You can see that for example the 2 × 2

window 290 is the value given and 290 is given by and so on and so38 + 66 + 89 + 97

forth.

So, the recurrent definition for an integral image would be given by

the above column plus current pixel location and the integral𝑠 𝑥, 𝑦( ) = 𝑠 𝑥, 𝑦 − 1( ) + 𝑖 𝑥, 𝑦( ) 

947



image at x, y would be . You can work this out and see that this is𝑠 𝑥, 𝑦( ) + 𝑖𝑖 𝑥 − 1, 𝑦( ) 

correct. And is the cumulative row sum and to make this recurrent definition work𝑠 𝑥, 𝑦( )

you have to define and .𝑠 𝑥, − 1( ) =  0 𝑖𝑖 − 1, 𝑦( ) =  0

(Refer Slide Time: 10:11)

Let us actually now see how the integral image can be used in particular for haar filters. Let

us assume now that we want to find the sum of the pixel intensities inside this rectangle

defined by 1, 2, 3, 4 A is this top left rectangle B is this entire rectangle including a and

including a part of it is A, C is this entire rectangle and D is this full rectangle. So, the sum of

the pixels within the rectangle 1, 2, 3, 4 would be given by . You can𝐷 + 𝐴 − 𝐵 + 𝐶( )

work this out and see that it would be quite true.

So, more formally you can say that sum of pixels inside a rectangle with an upper left pixel as

x1, y1 and bottom right pixel as x2, y2 could be given by the

, so you can work this𝑖𝑖 𝑥
2
, 𝑦

2( ) + 𝑖𝑖 𝑥
1

− 1, 𝑦
1

− 1( ) − 𝑖𝑖 𝑥
1

− 1, 𝑦
2( ) + 𝑖𝑖 𝑥

2
, 𝑦

1
− 1( )( )

out to see that this is actually true.

So, you would notice now that in this particular case, let us say you wanted to find out the

sum of pixel intensities in this particular square block, so then what you could do is you could

you already have the integral image computed, so you only have to look up a certain value

certain set of values here and say . Why is this useful?1492 + 532 − 798 − 1827

948



When you want to use a convolution such as a Haar filter for these kinds of images, if you

had a 2 rectangle feature, what we mean by a 2 rectangle feature is let us assume that you

have a Haar filter which is given by just a black region followed by a white region.

Remember we said that this is the sum of pixel intensities in the black region minus the sum

of pixel intensities in the white region, such a convolution for filter would only need 6

lookups in your integral image, why so?

You would need one lookup for all of these corners, so there are six corners here including

the middle ones you will need those 6 lookups and you will be able to compute what would

be the output of the haar filter without actually doing any kind of a convolution, you can just

look up the integral image and be able to get these values. As an exercise, try to think how

many lookups you would need for a 3 rectangle feature. What do we mean by a 3 rectangle

feature. Consider a haar filter with say black in the center and white on both sides.

So, this would be a 3 rectangle feature, how many lookups would this need? It is simple but

work it out later. Similarly, what if you had a 4 rectangle feature something like a

checkerboard something like this. So, then how many lookups do you need? Think about it as

homework.

(Refer Slide Time: 13:32)

So, once you have the outputs of these Haar filters, the algorithm of Viola and Jones

suggested that each feature can be now considered as a weak classifier. Given a feature 𝑓
𝑗

which is one of those Haar wavelets could be a 2 rectangle feature, a 3 rectangle feature, 4

949



rectangular feature one of those you can have all possible variants. A threshold and a parityθ
𝑗

which only indicates the sign. The classifier is defined as, the weak classifier is defined as𝑝
𝑗

and 0 otherwise.ℎ
𝑗

𝑥( ) =  1 𝑖𝑓 𝑝
𝑗
𝑓

𝑗
𝑥( ) < 𝑝

𝑗
θ

𝑗

So, you are saying that if that feature value is less than a threshold, you are going to call it 1,

0 otherwise, of course you could define the parity to use this otherwise if you like. So now,

using this you are going to get one classifier for every Haar feature. We know that a

combination of weak classifiers can give strong classifiers but do you see a problem with this

approach so far?

If you thought carefully, even if you had a simple sliding window of and let us say24 × 24

that is the window you are going to slide across the image and then inside each of those

sliding windows you are going to compute various Haar features and use this thresholding to

be able to detect whether Haar feature says there is a face or not a face. But the problem is if

you had even just a window there are over 160, 000 features possible. By that we24 × 24

mean, so within a window you could have a very large checkerboard then you24 × 24

could imagine all possible combinations of arranging black blocks and white blocks adjacent

to each other inside a window, you will have a huge number of features.24 × 24

Now to be able to compute 160, 000 weak classifiers inside each sliding window seems

tedious, what do we do?

(Refer Slide Time: 15:51)

950



That is where AdaBoost comes into the picture. So, the way Adaboost was used in the Viola

Jones algorithm is, the algorithm given here this is from the paper, we will only walk over the

salient parts of this, this is the standard Adaboost algorithm where given example images

till you initially start with uniformly weighting all your training samples and you𝑥
1
𝑦

1
𝑥

𝑛
𝑦

𝑛

normalize those weights across all of your training samples.

Now, for each feature j which is one of your Haar features among the all possible

combinations that you could have, you train a classifier j which is a which is a weakℎ
𝑗

classifier which is restricted to using a single feature and the error with respect to this weak

classifier is given by which is given by , rather is the output ofϵ
𝑗

𝑤
𝑖

× ℎ
𝑗

𝑥
𝑖( ) − 𝑦

𝑖| | ℎ
𝑗

𝑥
𝑖( )

this weak classifier was the expected output, so how close this weak classifier was to the𝑦
𝑖

expected output multiplied by the weight of that sample that we are evaluating, that is the

standard Adaboost approach to weight more erroneous samples a little higher and less

erroneous samples a little lower.

But now, the Viola Jones approach to using Adaboost says, among all those possible features

which would have given you several different classifiers, choose the classifier ht which with

the lowest error epsilon t is among all your possible classifiers choose the one that gives you

the least error. Based on the error of this classifier you re-weight all your samples as you see

here, this is again the standard reweighting step in AdaBoost and you repeat this over and

over again and your final strong classifier after a certain number of iterations, remember now

you would not be using all features you are only using the T number of features where capital

T is a parameter that you can give.

In each iteration you pick one of the features that is really strongest and at the end you only

use a weighted combination of capital T different features. And once again this final strong

classifier rule is the standard AdaBoost algorithm.

951



(Refer Slide Time: 18:19)

A third component of the Viola Jones algorithm was known as a classifier cascade, so this

came from the motivation that very few sub windows of an image actually have objects or

faces. Remember you could have 100s of 1000s of sub windows in a given image but you are

not going to have that many faces in a given image, so there it is very likely that the false

positive rate may be very high if you evaluate every possible window. So, how do we

overcome this issue?

So, what this classifier cascade idea suggests is eliminate negative windows earlier therefore

reducing computation time spent on them, so if there is a sub window that is negative ignore

it and never include any further sub windows inside that sub window for any further

processing. Speaking at a very high level, so you have all possible sub windows that goes to

the first stage and you rule out a certain number of them and assume that they will never have

a face at all then only those sub windows where a face is likely it goes to a next stage in the

classifier which again checks for faces again and if there are sub windows rejected at that

stage, that again comes out. Only the remaining sub windows go through the next stage so on

and so forth.

And in each of these stages, you have a set of weak classifiers. You can constrain that using

the number in capital T, but now you can ensure that you can use a stage of different

classifiers to keep refining your performance over time.

952



(Refer Slide Time: 20:05)

Why does this classifier cascade matter? We just mentioned that for a problem like phase

detection or object detection, false positive rate is very important. So, if you had a one

megapixel image, remember you are dealing with pixels and at least a comparable106

number of candidate phase locations, even as if you assumed that a face could be at each of

these locations you are at least looking at probabilities. Once again, you could have106

different sized faces which would even further expand the possible candidate phase regions

but for the moment, let us assume that you have at least candidate locations.106

So, your ideal false positive rate has to be less than assuming there is only 1 face or of10−6

the order of a few faces. So, you want your false positive rate to be about . If you took10−6

these basic Haar filters that we spoke about a few slides ago, this combination would yield

100 percent detection rate would give you a 50 percent false positive rate and it gives you a

lot of possibilities of faces. Not all of them would actually turn out to be faces.

If you went a little further and included 200 features, remember the above example we had

only two kinds of Haar filters, if you included 200 kinds of Haar filters, when we say 200

kinds you arrange those black rectangles and white rectangles in several ways you could have

them as a checkerboard checker board, a checker board, you could have 32 × 2 5 × 5

rectangles you could have 5 rectangles 7 rectangles all those possibilities are open. You have

200 features that yields a 95 percent detection rate and a false positive rate of 1 in roughly

953



about 14, 000. It is better but it is still not enough to what we want which is false10−6

positive rate.

What do we do? The classifier cascade comes to our rescue. So remember, that when you

have a cascade the final detection rate and the false positive rate are found by multiplying the

false positive rate and reduction rate of each of these stages. So, if each of these stages was

say a 200 feature classifier which means your capital T was 200, then you may have a

detection rate of say approximately 0.9. You could then achieve a false positive rate of 10

power minus 6 across a 10 stage cascade if each stage had a deduction rate of 0.99 and a false

positive rate of 0.3.

Because if you had a false positive rate of 0.3 in each stage of the cascade, you would then

have because you are talking about 10 stage cascade so and so on,0. 310 0. 3 × 0. 3 × 0. 3

we will have which is roughly about the order of . So the idea of classifier cascade0. 310 10−6

allows us for each stage in the cascade to have a reasonable detection rate of 0.99 and a false

positive rate of 0.3 which as we saw is possible with just a few features and we just keep

refining these over stages of the cascade and obtain the false positive rate we ideally wanted.

(Refer Slide Time: 23:39)

Another aspect of this method, for that matter any detection method, is the notion of

non-maximum suppression. So, it is likely that many windows around an object may be

classified as containing an object. So, how do you choose which one of them is the right

object?

954



(Refer Slide Time: 24:06)

So, we have to use some kind of bounding box similarity measures and the most popular one

is known as intersection over union. Intersection over union states that if you have two

bounding boxes B1 and B2 you take their intersection and you take their union. The ratio of

the intersection to the union gives you a sense of how close these bounding boxes are. If the

ratio is 1 which means the bounding boxes B1 and B2 are exactly the same or as they get

close to 1 you are going to have that these bounding boxes are fairly overlapping with each

other. How do we use this IoU?

(Refer Slide Time: 24:45)

955



We can now use it for non-maximum suppression. So, if you had a set of possible bounding

boxes which contain an object you can select a random box from them. Then you compare

that box with the rest of the boxes. If IoU is greater than 0.5, you remove that box from the

list. So, you are ensuring that if there are multiple boxes that have a 50 percent overlap with

each other, you retain only one of them.

We will see a little later that we would not just follow this, we will also follow trying to find

which of these boxes has the highest confidence on the object being in the box, we will see

that in a few slides from now. So, this process is known as non-maximal suppression NMS,

which is extensively used in detection today as we will see.

(Refer Slide Time: 25:39)

That was the Viola Jones algorithm for phase detection. Very popular. Was used in several

technologies. Another popular approach at that time was known as the Histogram of Oriented

Gradients. We have seen this when we talked about extracting handcrafted features from

images. But we will now talk about it as to how they are used for the task of pedestrian

detection.

So, if you have say a pedestrian given in an image, you have a detection window that slides

over an image and gets all your gradients. Could be a sobel filter, an elegy filter so on, so you

have all of your gradients. Now you divide the entire image into cells and in each cell you

draw out a histogram of orientations of gradients. We have done this before with sift so you

956



perhaps know how to do it. Once you get these histograms of oriented gradients in each of

these cells, then you consider overlapping blocks of cells.2 × 2

So you see here that you have 4 different cells. So they could be overlapping. But you2 × 2

take a set of cells, normalize the histograms in all of those 4 blocks and that is what2 × 2

you define as the final histogram for the center pixel. When you do this for all the cells in

your image, you would get a final descriptor which looks like this where you have a set of

histograms of oriented gradients across different locations in the image. How do you use this?

Once you get this final descriptor you then train a support vector machine to say whether this

is a pedestrian or not a pedestrian. So, this was introduced in this work in 2005 by Dalal and

Triggs.

(Refer Slide Time: 27:38)

So, you can also visualize as to how the weights of the support vectors look in this particular

scenario. So, if you took the average gradient image over all your training examples, you can

visualize what are the positive and negative SVM weights. Remember these are your

different dimensions here because the cells are your dimensions of your entire descriptor

vector. So, you can now imagine positive and negative SVM weights after you learn a

support vector machine.

Given a test image and its corresponding histogram of oriented gradient descriptor, you can

multiply these descriptors by the positive and negative weights and you would get something

957



like this and you notice here that looking at the positive weights it would be easy for the

SVM to classify this as a pedestrian being in an image.

958



(Refer Slide Time: 28:31)

This was also extended to be done at a multi-resolution level, where you have an image

pyramid and you perform the same approach at each stage of the pyramid. So, for example, at

the lowest resolution you have one specific block and you would get a score using a support

vector machine for that particular window in the lowest resolution image. You get a certain

score for a pedestrian being there. You would do this similarly for the higher resolution and

the highest resolution images and then you can use various techniques to integrate the scores.

You could integrate the scores the way we did it for pyramid matching by giving a high score

for the highest resolution and a low score for the lowest resolution.

Or you could take a vote or you could use other kinds of heuristics to combine these scores to

find out whether a person was in an image. These were the different approaches that were

used for detection before deep learning came into the picture.

959



(Refer Slide Time: 29:38)

Now let us try to see how one would do object detection using CNNs in the simplest possible

manner. If you had say images of cars during training, you would train a CNN on various

images of cars to learn a car classifier. So you would use a standard cross entropy loss. CNN,

a simple CNN. At test time, when you get an image where a car could be located anywhere in

the image, you take different sliding windows of multiple scales.

So, you may have to take say 100, 000 sliding windows potentially from this image and each

of those sliding windows you give as input to the CNN assuming that they all are of the same

size or you can bring them to the same size. You give that as input to the CNN and that CNN

now classifies each window in the original image as belonging to a car or not a car. So, based

on that you would detect a car here and here.

960



(Refer Slide Time: 30:42)

Once again in this approach you can include non-maximum suppression to improve the

performance but here as we said before once you get the list of all possible bounding boxes

where a car could be present, you consider a bounding box with the highest class signal. So,

in this case, the red box would be the box with the highest class signal 0.93. Now you take

the IoU of all the other bounding boxes with respect to this bounding box, this red bounding

box. If any of them have a high overlap or a high IoU, with this red bounding box, you

eliminate them and retain only the red bounding box because it had the highest confidence of

a car present in that bounding box.

(Refer Slide Time: 31:34)

961



Do you see problems with this approach? This is the simplest way of adapting CNNs for

object detection but do you see any issues? There are actually a few of them. Firstly, the

bounding boxes may not be tightly around the object. You can see here that some of these

bounding boxes are fairly loose. We ideally want a tight bounding box so that we exactly

focus on only that part of the object, that part of the image that contains the object. That could

happen in this kind of an approach.

The other problem here is obviously that you have to evaluate thousands of sliding windows

through the CNN to be able to find which of them contain your object of choice. We are

going to talk about methods that overcome this issue.

(Refer Slide Time: 32:33)

But before we go there, we will talk about object localization which as we said was a

precursor to detection. So, object localization can be achieved by, if you had only a single

object in an image, you can then give that as input to a CNN, you get your feature maps, you

get your fully connected network. Now, you branch out your CNN into two parts, one part

that gives you a classification score which can be learnt using a cross entropy loss, that is the

standard CNN for classification that we have spoken about so far, but we could also do a

bounding box regression.

So, you could now try to see what are the exact coordinates of the bounding box say with

respect to the entire image or with respect to any other box in the image. You could see what

is the offset and you also learn that as part of your learning procedure. So, your fully

962



connected network at the end would have two heads, a classification head and a regression

head. The classification head would require clock cross entropy loss, the regression head

which will learn in x, y the top left corner of the box, a height and the width. 4 coordinates, 4

values.

And these values can be learnt using a normal L2 or mean square loss, so the entire network

would be trained by the sum of these two losses to not only classify the image but also

localize the image.

(Refer Slide Time: 34:16)

One of the first successes of a good localizer in CNN was OverFeat. OverFeat was the winner

of the ImageNet localization challenge. Every year, ImageNet, in addition to having the

classification challenge also had a localization challenge and OverFeat was the winner of this

challenge in 2013 and the way OverFeat did localization was to ensure that your entire

network is convolutional instead of having fully connected layers. So, this avoids

computation time over sub windows by applying filter directly to the image, let us see how.

963



(Refer Slide Time: 35:02)

So, given an input which is say or you pad and make it you perform14 × 14 16 × 16

convolution this is only an example for visualization you get a output assume5 × 5 10 × 10

if you did not do padding and if you do 2 pixel padding it becomes then a12 × 12 2 × 2

pooling makes it . A convolution makes it and now using multiple one5 × 5 5 × 5 1 × 1

cross one convolutions you can get an output directly without having to perform any fully

connected layer operations.

(Refer Slide Time: 35:45)

So, this idea of OverFeat made computations significantly faster as you can see now, instead

of using a fully connected layer OverFeat replaces it with a fully convolutional layer which

964



finally has convolution similar to what we saw with InceptionNet if you recall or1 × 1

GoogleNet and the this OverFeat approach uses that to get your final performance. Why is

this useful? Because we remember we said that fully connected layers use up a lot of

parameters. That is what we said and using a fully convolutional approach overcomes this

and hence can speed up performance.

965


