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Explaining CNNs - Early Methods 

Continuing from the previous lecture, let us now discuss a few more methods that can help us 

understand CNN and its predictions. 

(Refer Slide Time: 00:27) 

 

Let us start with a question, which is a bit different from what we saw in the previous lecture. 

The question is, can we find an image that maximizes a class score? So when AlexNet or any 

other network, when trained on image net has been exposed to a lot of, for example, say cat 

images, so at the end of the training, does AlexNet know what an average cat looks like? If we 

ask it to reconstruct an image of a cat, can it do it, is this the question that we are trying to ask? 

Can you think of how we can do this? 
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(Refer Slide Time: 01:09)  

 

In case you do not have the answer, you can do this using a different use of the gradient descent 

approach that we used for updating the weights of a neural network. And this was first 

introduced by a work called deep insight convolutional networks in 2014. And the idea here is 

you take the trained AlexNet model, and you provide a 0 image as input, a 0 image could be a 

black image or a gray image, you can choose whichever ones you would like.  

And you give this as input to the CNN model, and you now want the final prediction to be one 

hot vector, where the one is in the position of the cat or any other class that you want to get an 

image of, and 0s in all other places that is what you would like to see at the last layer, at the 

output classification layer. 

But, when you feed a 0 images input, you will not be able to get that, you probably get a 

different probability vector. Based on the difference between these two, you have a loss, you 

can now update your network. But this time, you are not going to update your network, you are 

going to do what we call back prop to the image. What is a backdrop image? 

If you had a loss in the last layer, we have spoken so far, on different ways of computing, 
𝑑𝐿

𝑑𝑊
, 

depending on what weight you are trying to compute the gradient of. If it is the last layer, it is 

straightforward, if it is an intermediate layer, you use the chain rule, if it is a convolutional 

layer, you have to think through it a bit differently, batch normalization layer, you have to work 

these things out, so on and so forth, we have been able to do that. 
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Can we extend this to compute 
𝑑𝐿

𝑑𝑋
, where X is the input? That can be done. This is just another 

version of the chain rule, you will just have to carefully 
𝑑𝐿

𝑑𝑋
 through all the activations and 

weights in the neural network. If you do not believe it, try it out as homework to work it out. 

Once you have such a gradient, we try to do an image update, and how do we do the image 

update? We do it using gradient ascent. So far, we spoke about gradient descent as a 

methodology to minimize an objective function. In gradient ascent, we maximize an objective 

function and we will see this objective function in the next slide. So we will use gradient ascent 

to get the final image. 

So once you do a small image update, the updated image. So it could have been an initial 0 

image and after doing an update, the x becomes different now, or the I becomes different 

assuming this image is I which is equal to X for us. Now the I becomes a new iterated update 

I and that is forward propagated through the network, you again get an output, you compare it 

to the expected output, which should have 1 at the position of a cat and 0s elsewhere and you 

repeat this process over and over again. 

(Refer Slide Time: 04:32) 

 

What could be the objective function? The objective function is formally written as you want 

to arg max over me, where I am the input image, 𝑆𝑐(𝐼), which is the scores that you have in the 

last layer, 𝑆𝑐(𝐼) is when you propagate I through the network and get scores in the last layer. 

You want to find an I that maximizes the score corresponding to a particular class.  
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And you have a regularizer on the image, just so that you will not overfit. Remember, because 

this is a maximization problem, you have a negative sign because you would ideally like to 

minimize the two norms of the image that is the reason for the negative side. So how do you 

solve this problem, because it is a maximization problem, you use gradient ascent. 

So you go in the positive direction of the gradient and keep climbing, and keep updating the 

image over and over again. And at the end of the many iterations, when the gradient between 

your output, and your expected output in the last layer is close to 0, you would have converged, 

and you would have got one such image, let us see a few examples. 

(Refer Slide Time: 05:45) 

 

So here are a few images that maximize a class score. This may not feel like the way we 

perceive these images. But this is what the model things are representative of those objects. So 

any such artifacts in an image, it is going to consider it as belonging to an object. So the top 

left is a washing machine, below is a goose, you can see that there is a structure of a goose 

located at different points, then you have an ostrich, a limousine, a computer keyboard, and so 

on. 
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(Refer Slide Time: 06:21) 

 

You can do such an optimization, not just with respect to the last layer, you can do this with 

respect to any neuron in the neural network, you can try to see if you want to find out which 

image is maximally activated when you run, we saw in the previous lecture that we keep 

forward propagating several images, and then see which all images fire a particular neuron, 

that would have been one way of doing it.  

But now what we can do is start with a gray image or a 0 image, forward propagate your image 

until a particular layer, let us say you have a particular neuron in one layer that you wanted to 

maximize, that you wanted to fire for a particular image, then you go forward propagate until 

that layer, you set the gradient with respect to that neuron to be 1 and everything else to 0, 

which means you want that to fire and you backpropagate from there and update the input 

image iteratively using gradient ascent, and you will now be able to get an average image that 

fires that particular neuron. 
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(Refer Slide Time: 07:32)  

 

Another added up that was proposed in the same work was the concept of just visualizing the 

data gradient. So, how do you go about doing it, which means we are talking about 
𝑑𝐿

𝑑𝐼
 in this 

case, remember, we are saying that I is equal to x, which is the input image for us.  

So we have a 
𝑑𝐿

𝑑𝐼
, which gives us the gradient of the output with respect to the input. So in our 

case, we are defining l as 𝑆𝑐(𝐼), that is the score that we want to maximize. It is not a loss here, 

but it is a maximization of the score. But because you have three channels in your input, how 

do you understand the gradient by itself? You can, this paper suggests that you take an absolute 

value of the gradient along each channel, and then take the maximum of those as the final 

gradient at a particular pixel location. 

Instead of trying to update an image iteratively, this suggests that simply visualizing that 

gradient will tell you the shape of that gradient gives you a rough picture of what maximizes 

that particular output neuron. Because there is color, you take the maximum among those, and 

you assume that that could be a good representation 
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(Refer Slide Time: 08:55) 

 

Here are a few examples. So here you see a sailboat and you see that these were the pixels that 

had the highest gradient across the color channels, which maximize the score. Similarly, this 

one for the dog and this one for this object, and so on. So what can you do with this gradient? 

Okay, it does seem to give us an indication of which part of the image is responsible or probably 

caused the particular probability score to go up. 

(Refer Slide Time: 09:30)  

 

They suggested that you could join this with a segmentation method known as GrabCut, which 

can be applied to the data gradient to get an object mask. GrabCut is an extension or adaptation 

of the GrabCut segmentation that we saw earlier in this course. Using this if you had an input 

image, and you get the gradient corresponding to a particular class, then using those gradients 
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and this GrabCut segmentation algorithm, which is a way of taking those pixels and segmenting 

the region around them, you end up getting a mask in the input image, which is responsible for 

a particular class to be predicted. Here are a couple of more examples, so you see especially 

the third row a bit more clearer. 

You can see here that you have a bird, it is a data gradient, then you use GrabCut, to segment 

out that object from the background, and you get a nice mask of the object, which you can use 

for other purposes. For details of GrabCut, please see this link below and that is also an exercise 

for you in this lecture, to see how GrabCut can be used with the data gradient to obtain these 

kinds of masks. 

(Refer Slide Time: 10:56)  

 

Another question that we can ask you is, given the FC 7 representation of data in a CNN, so 

that is the output representation of the FC 7 layer or the fully connected 7th layer of AlexNet, 

is it possible to reconstruct the original image? In the last lecture, we saw that a two-

dimensional embedding of these representations from the FC 7 layer does seem to capture 

semantics and similar images seem to be put together in that embedding space.  

But now we are going further and asking if I gave you a code of a particular object, can you 

reconstruct how that object looks doing some kind of inverse mapping? How do you think you 

would do this? This can be done again, by solving an optimization problem with two criteria. 

One, we would like the code of the reconstructed image to be similar to the code that we are 

given. By code, we mean the representation obtained at the output of the FC 7 layer. And the 

second is, we want that image to look as natural as possible, we're going to call that image prior 
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regularization or image regularization. So we will keep these two criteria in the objective 

function, which means what we are going to get is x star is going to be a minimization problem 

over 𝜑(𝑥), take x propagated through AlexNet and take the FC 7 layer output that is what we 

refer to as 𝜑(𝑥). It is a function which we are calling as 𝜑(𝑥), we want the 𝜑(𝑥) that we 

optimize through this process to be close to the phi not which is given to us. 

Remember, we said there is a code given to us, we want to find an image whose code is close 

to the code that we have in our hand. So, we are trying to do that using an optimization 

approach, take an x, 𝜑(𝑥) − 𝜑0 must be minimized, the mean square error between them must 

be minimized and you add a regularizer on top of x similar to what we saw on the earlier slide, 

this is just an image regularization step. 

(Refer Slide Time: 13:09)  

 

Here are some results using the AlexNet model. So, this is done by taking the log probabilities 

for the image net classes in the last layer. So, this is the original image, and this corresponds to 

a particular class in image net, and we are now trying to take that representation for this 

particular image, and then trying to reconstruct similar images that would give the same FC 7 

representations. Why 5 different images? 
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(Refer Slide Time: 13:45) 

 

If you go back to the previous slide, you see that this is an optimization problem on x, which 

means you would start with the value of x and then do gradient descent to keep updating x until 

you got a minimum value on this objective function. So, if you start with different x's, you will 

get different solutions and those are the different solutions that you see here. So, these are with 

five different initializations. 

(Refer Slide Time: 14:10) 

 

And you see that there is an overall similarity to the original image, which we wanted to 

reconstruct. 
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(Refer Slide Time: 14:23)  

 

Here are more examples, this is the original image, we take the FC 7 representation of that 

original image, and then ask this kind of an optimization methodology to rediscover that 

original image, whose representation would have been that FC embedding that was given to us 

and you see a fairly close reconstruction here. Similarly, this one, this one, this one, and this 

one. 

(Refer Slide Time: 14:53)  

 

Moving further, we talk about an important method called guided backpropagation that was 

developed in 2015 that helped improve the performance while visualizing data gradients. Let 

us look at this approach. It is sometimes also called the deconvolution method of visualizing 

and understanding CNNs. But the more popular name today is guided backpropagation. So 
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guided backpropagation is used, along with other explanation methods in more recent years, 

which we will see in later slides this week. Let us once again start with AlexNet let us and of 

course, needless to say, AlexNet can be replaced with any other model of CNN, we are only 

explaining all these methods using AlexNet. 

Let us take the AlexNet model. Let us feed an image into the trained AlexNet model. Let us 

pick a layer and set the gradient there to 0, except for one particular neuron, which we want to 

maximally activate. Let us assume that this is our setting, so the way we would go about it is 

you take the input image, you will forward propagate it through as many layers.  

And remember, you have a ReLU activation function in AlexNet. And what does the ReLU 

activation function do? In any layer, where you have such a matrix such a set of activations in 

any layer, wherever there are negative values denoted by these red boxes here, you replace 

them with 0 and anything that is nonnegative is retained as it is that's the standard ReLU 

operation. 

Now, when you do this, you can then backdrop to the image as we just mentioned, because we 

want to set the gradient of a particular neuron to be 1, everything else to 0 in that layer, and 

then backprop from there to the image and do gradient ascent on the image to understand which 

image maximally activated that neuron in that country layer, for instance.  

And when we backpropagate, remember that if these were your gradients, right? Let us assume 

that what you see here were your gradients, we know that, because of the effect of ReLU, 

wherever there were negative values, these were the locations that had once there, there the 

gradient would become 0 because when you backpropagate, it will get multiplied by the 

activations in those locations when you go through chain rule. 

And because the activations are those locations become 0, the gradient will also become 0. And 

this is what you will be left with which you backpropagate further to reconstruct the original 

image. Note here, that in this particular location, in this particular representation of the 

gradients, the gradient values can be negative or positive, it is just that where the input was 

negative, the gradient becomes 0 there.  

In the other locations, the gradient can be negative or positive. And when you do this, you can 

visualize your data gradient and you can see an image that looks somewhat like a cat here, if 

you observe closely, you can get the gradients that correspond to an outline of a cat. While it 

864



has some resemblance to the cat, you can also make out the risk fairly noisy. So what can you 

do about it? 

(Refer Slide Time: 18:19) 

 

So to handle this scenario, guided backpropagation, which is a method proposed in 2015, 

proposed that, instead of using in the backward pass, instead of allowing all the gradients to 

pass through, let us not allow the negative gradients to pass through. What does it mean? We 

are saying here, originally we said when the input is greater than 0, only those gradients will 

pass through because the rest of the gradients would have been cut off by the ReLU, which was 

applied in the forward pass. But now, we are adding that the gradient must also be nonnegative 

when you propagate. 

(Refer Slide Time: 19:03) 
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Rather, if you went to the previous slide. In addition to making these four 0s, you would also 

make this minus 2 as 0, this minus 1 as 0, and minus 1 as 0, only the positive gradients will be 

passed through to the previous layers when you do your gradient update for the reconstructed 

image. And doing this greatly improves the final visualization of the data gradient. 

(Refer Slide Time: 19:36) 

 

And now you get a clearer image of the cat the data gradient. Why does this happen? Because 

you allowed negative gradients to propagate, even aspects of the image that negatively 

correlated with the outcome in a particular neuron also contributed to coming up with this 

reconstruction of the image.  

By removing those, we now retain only those pixels that had a positive impact on the activation 

of a neuron in one of the layers that we are interested in. This is known as guided 

backpropagation and this is something that we use in other methods in the rest of this week's 

lectures also. 
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(Refer Slide Time: 20:22) 

 

The recommended readings for this lecture are once again the lecture notes of CS 231n on 

visualizing CNNs as well as three papers; Deep inside convolution neural networks, 

Visualizing and understanding convolutional networks in ECCV, and Striving for simplicity, 

the all convolutional net, which was the paper that introduced guided backpropagation. And 

one exercise, use this link hyperlink here to understand GrabCut, and how it can be used to 

generate masks using data gradients. 
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