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Explaining CNNs - Visualization Methods 

Continuing from where we left the last time. This week, we will focus on understanding, 

visualizing, and explaining the model predictions of a CNN, a convolution neural network, or 

for that matter any other neural network also. We will start with the first lecture on visualization 

methods that have different kernels of filters in a CNN or perhaps even activations in a 

particular layer of a CNN or even other methods that we will see later in this lecture.  

(Refer Slide Time: 01:08) 

 

Most of these lecture slides are based on lecture 13 of CS 231n at Stanford, and some of the 

content is borrowed from the excellent lectures of Mitesh Khapra at IIT, Madras. 
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(Refer Slide Time: 01:16)  

 

Let us start with the simplest form of visualization, which is visualizing the filters or kernels 

themselves. Remember, that when you have a CNN, in every convolution layer, you have a 

certain number of filters. For example, if you recall, in the AlexNet, the first convolutional 

layer had 11x11 filters, it had 96 of them, 48 going to one GPU, and 48 going through the other 

GPU if you recall AlexNet architecture.  

In this particular slide that you see here, we are looking at a variant of AlexNet, which was 

developed by Alex Krzyzewski a little later in 2014 when he came up with a method to paralyze 

CNNs, this is just an example to be able to visualize this more easily. So in this variant of 

AlexNet, the architecture had 64 filters in the first convolutional layer.  

So what you see on the left top here is 64 filters, each level across 11x11 in size. And each of 

them has three channels, the r channel, g channel, and b channel the three colors. So that is 

what we have is the total number of filters. So, if we visualized each of them on a grid such as 

this, remember that a filter is an image on its own, just like how convolution is commutative, 

you can always choose to look at an image as a filter or a filter as an image, it does not matter.  

Any matrix of the size of the filter can also be plotted as an image. So, when you do it that way, 

you get something like what you see on the top right here. So, let us try to look at some of them 

more carefully. So, if you visualized some of these filters more carefully, you see that there are 

filters that try to capture oriented edges. So, you can see this one here on the bottom row, the 

fourth from the left which captures it looks like a Gaussian edge detector, which smoothens 

out along a certain orientation. Similarly, you have another edge detector here, another edge 
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detector on top, you also have some which capture slightly higher order variations such as a 

checkerboard kind of a pattern or a series of striations so on and so forth. You also have color-

based edge detectors. So, in the last filter here on the bottom right, you see an edge detector 

that goes from green to pinkish or red color. So, you see similar color-based filters even on the 

top left here. 

So does is this a characteristic of AlexNet alone? Not, if you took even the filters of resnet 18, 

resnet 101, or densenet, 121, In each of these, the filters in the first convolutional layer have a 

very similar structure. All of them detect edges of different orientations. Certain higher-order 

interactions, such as checkerboard patterns, striations in different orientations, color blobs, 

certain color gradations as in edges in different colors, so on and so forth.  

You will see this as part of the assignment this week where you try out some of these 

experiments. So this tells us that the first layer seems to be acting like low-level image 

processing, edge detection, blob detection, maybe a checkerboard detection, so on and so forth. 

Remember here, that these are filters that are completely learned by a neural network, which 

we did not prime in any way. 

(Refer Slide Time: 05:32)  

 

You can also visualize the kernels of higher layers, just like how we did it for the first 

convolutional layer. You could also take all the filters of the second convolutional layer, the 

third convolutional layer, so on and so forth. But it happens that if you had to generalize them 

across applications, they are not that interesting. We did see an earlier example last week, where 

we took face images and showed that filters in the first layer correspond to low level image 
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features. Then we talked about middle layers, extracting noses, and eyes, and so on. And then 

we talked about the later layers extracting face-level information. It does happen in certain 

applications but in general, if you had a wider range of objects, if you only focused on faces or 

a smaller group of objects, maybe you could make sense of the higher layers, filters.  

(Refer Slide Time: 6:52) 

.  

But in a more general context such as image net, which has a thousand classes in the data set. 

These kinds of visualizations of filters of higher layers are not that interesting. So here are some 

examples, so you can see that the weights, remember in a CNN, the weights are the filters 

themselves.  

So if you look at weights in a later layer, you see that it may not be that interesting for 

understanding what a CNN is learning. That is because of the variety of classes that may result 

in various obstructions across the data set. So the input to the higher layers is no more the 

images that we understand. At the input layer, we know what we are providing as input but 

when you go to higher layers, you do not know what you are providing as input, so it becomes 

a little bit more difficult to understand what is happening.  
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However, if you take the filters of the first layer alone, across various models and datasets, 

Hope by now you are familiar with the various CNN models such as AlexNet, ResNet, dense 

net, VGG, so on and so forth. So if you have to look at the filters of the first layer, first 

convolutional layer, across all of these models you get very similar kinds of filters and it is 

generally called the Gabor-like filters fitting. Why is that so? Recall the Gabor filters discussion 

that we had earlier in the course, where we said, a Gabor filter is like a combination of a 

Gaussian and a sinusoid. 

So, and you can change the scale and you can change the orientation of the Gabor filter. And 

you end up detecting edges in different orientations, you perhaps end up detecting different 

striations, checkerboard patterns, so on and so forth, which is exactly what we see as the CNN 

learning on its own too. So that is the reason why we call this entire visualization of the filters 

of the first convolutional layer a Gabor, like filter fatigue, by fatigue here we just mean, it is 

exactly the same across all of these models and data sets. 
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Another option, other than visualizing the filters in different layers, when we talk about 

visualizing the filters, remember it is 11x11 or a 7x7 or whatever be the size of the filter, you 

simply have to plot it as an image. Another thing that you can do is to visualize the 

representation space learned by CNN. What do we mean, if you took the AlexNet, remember 

that the output of FC 7 or the fully connected layer in the 7th position of the depth of the 

network, which we denote as FC 7 is a 4096-dimensional vector?  

That is the layer immediately before the classification. So what we can do is take all the images 

in your test set or validation set for that matter and you forward propagate those images until 

this particular layer and collect all these 4096-dimensional vectors. 

(Refer Slide Time: 9:48)  
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What do we do with them? You can now visualize the space of these FC 7 feature vectors by 

reducing the dimensionality from 4096 to any dimension of your choice. But for simplicity, let 

us say two dimensions. How do we do this? Once again, hopefully, you have done a basic 

machine learning course.  

And you know that you can use any dimensionality reduction method to be able to do this. A 

simple example could be principal component analysis. So you take all of those 4096-

dimensional vectors of several input images, and you do a PCA on top of them to bring all of 

them into two-dimensional space. 

A more popular approach, which is considered to be a very strong dimensionality reduction 

method is also t-SNE, which stands for t Stochastic Neighborhood Embedding, this was a 

method once again developed by Hinton along with Vonda Martin in 2008. We also have a 

link for this towards the end of this lecture.  

So you can play around with the t-SNE if you would like to understand it more. So when you 

apply t-SNE, on the representations that you get as the output of the CNN in the penultimate 

layer, you end up getting results such as this, this is specific for the enlist data set, where you 

have 10 classes, this is the handwritten digit data set. So you see here that each class invariably 

goods goes to its cluster. 

This seems to tell us while we cannot, in reality, visualize a 4096-dimensional space. By 

bringing it down to two dimensions, we understand that the classes, the representations 

belonging to different classes are fairly well separated into different clusters. And why is that 

important? Now, developing a classification algorithm on these representations becomes an 

easy task. And that is why having a classification layer right after that penultimate layer of 

representations makes the entire CNN work well to classify. 
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So here is an example of the same for image net. So where this is a plot, a two-dimensional 

plot of various images in the image net data set, taken to 4096-dimensional space by AlexNet, 

and then brought down to two-dimensional space and plotted on a two-dimensional map, the 

only thing we are doing here is, we are putting the respective image on each location, just for 

understanding what is happening. So this is just a huge map, and if you had to look at one 

particular part of it, let us try to zoom in into one particular part of it. 

(Refer Slide Time: 12:42)  

 

You see, that all the images corresponding to say a field seem to be coming together in this 

space of representations. For this matter, if you scroll around and see other parts of it, you will 

see that similar objects you can see at many points of these embeddings here that at many 
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points, you see very similar objects being grouped, you see all cars somewhere here, so on and 

so forth. This tells us that these embeddings or representations that you get out of the 

penultimate layer, actually capture the semantic nature of these images. And objects that have 

similar semantics are grouped, while objects of different semantics are far apart from each 

other. So this gives us an understanding the CNN representations seem to be capturing the 

semantics. 

Keep this in mind, when we talked about handcrafted features and learn representations, this is 

what we were talking about. In handcrafted features such as Sift or Hog or LBP, you have to 

decide what may be useful for a given application and then hand design that filter that you want 

to use as a representation of the image after which you may apply a machine learning algorithm. 

But now, we are letting the neural network the CNN in particular, automatically learn these 

representations that it needs to solve a particular task. 

(Refer Slide Time: 14:16) 

 

Here is a visualization of the Conv5 feature maps, in AlexNet the Conv5 feature map is 

128x13x13. So there are 128 feature maps each 13 by 13. If you now visualize them as 

grayscale images, you can see something interesting here. So when this specific image with 

two people is given as input, you see that one of the filters, or actually, there are quite a few of 

them in fact, seem to be capturing the fact that there are two entities in the image. So this could 

give you a hint that the later layers in the CNN can capture these higher-level semantics of the 

objects in the images. 
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(Refer Slide Time: 15:00) 

 

Another way of visualizing and understanding CNNs is, you could extend the same thought 

and consider a trained CNN. Remember that all of this analysis is for a trained CNN, after 

training the CNN, you want to understand what it has learned. Remember, that is the context 

in which we are talking about this.  

So you can consider a CNN, and consider any single neuron in its intermediate layers, so let us 

consider that particular one in green. Now, you can try to visualize which images cause that 

particular neuron to fire the most. So you can give different images as input to the CNN, and 

keep monitoring that particular neuron and see which image is making it fire the most. What 

can we do with that? 

Now we can work backward and understand that this particular pixel here will have a certain 

receptive field in the previous convolution layer, which means that is the region that led to this 

pixel being formed in this particular convolutional layer. Similarly, you can take the pixels in 

the previous layer, and look at the receptive field of each of them and find the receptive field 

in the earlier layer, in this case, the first convolution layer, you can go further again and find 

out the receptive field in the original image, which was responsible for this pixel in the third 

convolutional layer. 

Remember, we were also discussing this when we talked about backpropagation through 

CNNs, where we try to understand the receptive field that leads or to a particular pixel getting 

affected in a particular layer. It is the same principle here. 
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Now, if we took images, and try to understand which of them caused a particular neuron to fire, 

we end up seeing several patterns. So in this set of images, each row corresponds to one 

particular neuron that was fired, and the set of images and the region inside the set of images, 

which is shown as a white bounding box, which caused that neuron to fire.  

So here is the first row, interestingly all of those images correspond to people, especially busts 

of people, it looks like that particular neuron was capturing people until they are a bust until 

their chest. The second neuron here seems to be capturing different dogs, maybe some 

honeycomb kind of a pattern, even a US flag was taught that honeycomb kind of a pattern is 

present.  

A third neuron captures a certain red blob across all of the images. The fourth neuron captures 

digits in images, and if you look at the last neuron here, the sixth row, you see that it seems to 

be capturing specular reflection in all of the images. So over time, as you train the CNNs, each 

neuron is getting fired for certain artifacts in the images.  

And this should probably go back and help you connect to drop out, where we try to ensure 

that no particular neuron or weight overfits to a training data. And we allow all neurons to learn 

a diverse set of artifacts in images. So this should help you connect to drop out in that sense. 
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Here are further examples of the same idea where you take different neurons in CNN and try 

to see which images or patches of images fired that neuron the most. Once again, you see a 

fairly consistent trend here, that some of them seemed to fire for I think, this is an eye of an 

animal, there is again some text in images, there is vertical text and images, there are faces, 

there are dog faces, again, and so on. 

(Refer Slide Time: 19:12)  

 

And the last method that we will talk about in this lecture is what is known as occlusion 

experiments, which attempt to leverage our objective that we finally want to understand which 

pixels in an image corresponding to the object recognized by the CNN. Why does this matter? 

We would like to know if the CNN looked at the cat in the image, while giving the label as a 
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cat for the image, or did it look at a building in the background or grass on the ground? 

Remember, a neural network learns correlations between various pixels that are present in your 

data set to be able to give good classification performance. So if all of your cats in your data 

set were found only on grass, a neural network could assume that the presence of grass means 

a presence of a cat. 

If you have a test set, where a cat is found in a different background, the neural network may 

now not be able to predict that as a cat. So to be able to get that kind of trust in the model, the 

model was indeed looking at the cat while calling it a cat. The occlusion experiments, do this 

using a specific methodology.  

So given these images that you see here, we occlude out different patches in the image centered 

on each pixel. And you see the effect on the predicted probability of the correct class. Let us 

take an example, so you can see a gray patch here on the image so you occlude that part of the 

image, fill it with gray, and send the whole image as input to the CNN, and you would get a 

particular probability for the correct label in this case, which is Pomeranian. So that is plotted 

as a probability in that particular location. 

Similarly, you gray out a patch here, send the full image as input to a CNN, get a probability 

for a Pomeranian. How do you get the probability as the output of the softmax activation 

function, and that probability value is plotted here in this image. So by doing this, by moving 

your gray patch across the image, you will have an entire heat map of probabilities of whether 

a pixel or a patch around a pixel reduces the probability of a Pomeranian or does it keep it the 

same way.  

So in this particular heat map, red is the highest value, and blue is the lower value. So you 

notice here, that when the patch is placed on the dog's face, the probability of the image being 

a Pomeranian drops to a low value. So this tells us that the image for the CNN model was in 

fact, looking at the dog's face to call this a Pomeranian.  

So in fact, this entire discussion came out of Zeiler’s and Fergus' work on visualizing and 

understanding convolutional neural networks. It is a good read for you to look at the end of this 

lecture. They observe that when you place a gray patch on the dog's face, the class label 

predicted by the CNN is a tennis ball, which is perhaps the object that takes precedence when 

you cover the dog's face. Similarly, in the second image, you see that the true label is the car 
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wheel, and as you keep using this gray patch all over the image, you see that the probability 

drops to the lowest when the wheel is covered. 

And the third image more challenging is where you have two humans and a dog in between 

them, which is an Afghan hound, which is the true label, you once again see that when the 

pixels corresponding to the dog are occluded by the gray patch, the probability drops for the 

Afghan hound drops low. This is even trickier because there are humans and the model could 

have been biased or affected by the presence of those humans, but the model does well in this 

particular case. 

(Refer Slide Time: 23:47) 

 

So occluding, the face of the dog causes a maximum drop in the prediction probability. 
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(Refer Slide Time: 23:51) 

 

To summarize the methods that we covered in this lecture, given a CNN, we are going to call 

all of these methods as do not disturb the model methods, which means we are not going to 

touch anything in the model, we are only going to use the model as it is and be able to leverage 

various kinds of understanding from the model.  

So you can take the convolutional layer, and then visualize your filters and kernels that is one 

of the first methods that we spoke about. Unfortunately, this is only interpretable at the first 

layer, and may not be interesting enough at higher layers. And we also talked about the Gabor-

like filter fatigue here. You could also take any other neuron, for example, in a pooling layer, 

and visualize the patches that maximally activate that neuron, you can get some understanding 

of what the CNN is learning using this kind of approach. 

The third thing that we talked about is you can take the fully connected layer, the 

representations that you get at the fully connected layer, and visualize the representation and 

then do dimensionality reduction methods such as t-SNE on these representations, and you get 

an entire set of embeddings for image net.  

And lastly, we spoke about the occlusion experiment, where you take input and perturb the 

input, and then see what happens at the final classification layer and that gives you a set of a 

heat map that tells you which part of the image the model was looking at while making a 

prediction. 
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Recommended readings, lecture notes of CS 231n, as well as a nice deep visualization toolkit 

demo video on the web page by Jason Jasinski, I would advise you to look at that. You can also 

get to know more about t-SNE and t-SNE visualizations as a dimensionality reduction 

technique on these links provided here. 

(Refer Slide Time: 25:53) 

 

Here are some references. 
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