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Fine tuning in CNNs 

So far we have seen several variants of CNN architectures, which firstly try to increase the                

depth to improve performance, then try to make computations more efficient, while not             

sacrificing performance. And then finally variants in which it was okay to sacrifice             

performance, but you needed it to bring the CNN under a lower regime of computations.  

We saw all of these variants. And in all of these variants, including the squeeze excitation                

network, the back propagation of the CNN by itself was not affected, which let us play with                 

these architectures. In this lecture, we will talk about an important aspect of CNNs that               

allows us to design architectures for newer tasks or newer domains, given an architecture that               

works on a particular domain. For example, if we know AlexNet works on the Image net data                 

set, how can we leverage that knowledge to develop a model for another domain for another                

task also. 

(Refer Slide Time: 01:30)  

 

To discuss this, let us start with limitations of CNN themselves. CNNs have a few               

fundamental problems. Firstly, optimization of the weights or parameters in these deep            

models, CNNs are typically deep models, is generally hard, it requires proper weight             

initialization, it requires a lot of hyper parameter tuning, various kinds of hyper parameters              

that is one of the fundamental limitations. Secondly, it can suffer from over fitting because               
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data samples used for training are generally much lesser in number to the parameters being               

claimed. We already saw that Alex net has 16 million parameters, VGG has 138 million,               

Inception v1, which is the first version of Google net had 5 million parameters, an improved                

version of it called Inception v3 had 23 million parameters, Resnet 50 had 25 million               

parameters and so on. 

So CNNs fundamentally required a long time, and a lot of computational power to train these                

networks. Alex net, as we said, took about a week to train on 2 Nvidia GTX 580 GPUs, VGG                   

took two to three weeks on 4 Nvidia Titan black GPUs, and Inception v1 or Google net                 

version 1 took about a week on hardware that was not shared.  

So all this can become even more difficult when you have to design an architecture for a new                  

domain, in which case, you have to design an architecture, run it for about a week or several                  

days, see how it works, go back and change the hyper parameter, again, run it for one more                  

week, see how it works. And this kind of an approach to designing new architectures of CNN                 

architectures will not scale. So how do we manage doing this for newer tasks and newer                

domains? 

(Refer Slide Time: 03:36)  

 

Some things you can try are perhaps try a good weight visualization. So that way, you                

become independent of the design of the architecture. We have seen Glorot or He              

initialization, that is one possibility. You can also initialize your CNNs with hand design              

filters, you could use an edge filter, or one of those filters to initialize the filters in                 

convolution layers, and then ask the CNN to fine tune them. Or, we have already seen                
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unsupervised greedy layer wise pre-training as another approach that could provide an            

initialization which the neural network can then capitalize on. 

As we said earlier, this approach of unsupervised greedy layer wise pre-training is not used               

these days due to the increased computational power and also data set sizes, it takes a long                 

time to do the greedy layer wise pre-training as only an initialization method. The other thing                

that we talked about to improve training of neural networks is to use regularization methods,               

be it L2 weight decay. L1 weight decay, dropout, batch norm, adding input noise, adding               

gradient noise, data augmentation, so on and so forth. This may alleviate over fitting, but may                

not really lead to faster training of CNNs. So what do we do? 

(Refer Slide Time: 05:01)  

 

An interesting property of CNN, which has been observed, which is something that we will               

focus on in the next week of lectures, is that if you visualize the filters that are learned by                   

layers in the convolution network after training the CNN, one happens to observe that the               

earlier layers have filters that probably represent filters that could capture oriented edges of              

different kinds, color blobs, so on and so forth.  

In other words, these are what we call low level features, simple low level features that we                 

get out of images. Filters that are learned by intermediate layers in a CNN seem to capture                 

some mid-level features which could be considered as combinations of low level features, a              

certain texture that is a combination of two edges, or a certain congregation of colors, and                

edges in colors, and so on and so forth. 
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And finally, the filters at later layers learn high level features, such as impressions of objects,                

for instance, which are higher level abstractions, when you compare to only edges in initial               

layers. The question we asked now is, what can we do with this? Can we use this in some                   

way? Can we use this understanding of how CNN filters are learning to be able to design                 

architectures better for newer tasks and newer domains? 

(Refer Slide Time: 06:36) 

 

The answer there is a setting in machine learning known as transfer learning. In transfer               

learning, before we go to transfer learning in traditional machine learning, if one had different               

tasks, you would have a data set for each of these tasks. And using a data set for each task,                    

you would have a different model through a learning system that you learn.  

In transfer learning, you have a set of source tasks that are given to you. And a target task on                    

which you want to perform well, that is the new domain, a new task that you want to solve                   

the problem on. So when we say source and target, for example, you could imagine now that                 

you have trained Alex net, on the image net dataset and tomorrow, you have data coming                

from a different domain. 

For example, let us say you want to build a recognition of objects for self-driving cars in                 

India, these objects may be different from the objects in image net. So how do you now                 

transfer the model that you learnt on image net to a model that you want to develop on in a                    

new domain? In this case, you try to use the data in the target domain, as well as the model or                     

the knowledge that you got from the source domain to be able to learn a model for the target                   

domain. So this we call transfer learning to be able to transfer knowledge from an earlier                
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source task to a target task that we are currently interested in. How does this relate to the                  

hierarchical learning of abstractions of features in CNNs, we will see that in a moment. 

(Refer Slide Time: 08:23)  

 

So we know now that using knowledge learned over a different task to aid the training of                 

current tasks is transfer learning. We now also know that we do have pre trained models with                 

good results available to us, for example, an Alex net on image net is pre trained, and that                  

model is already given to us, can be leveraged this in some way to improve performance on a                  

target task.  

We can do this in a couple of ways. We can do this because we know that the Alex nets                    

filters or any other models filters, any other CNN models filters for that matter, has some                

general features in the first few layers. And the features slowly start getting specialized as               

you go to deeper layers. Why do we say that? 
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(Refer Slide Time: 09:15) 

 

If you go back to an earlier slide, you see the earlier layers filters seem to capture general                  

information like ages, and color blobs, and so on. Whereas the later filters seem to capture                

some object specific information, which could be specialized for that task. 

(Refer Slide Time: 09:40)  

 

So what we can do now is, you could take a pre trained neural network such as an Alex net to                     

a newer domain, and keep all of those weights of Alex net exactly the same. Do not update                  

them for this new task, instead take only the last layer, which we call as the classification                 

layer, and train only those parameters for the newer task.  
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We call this to be fine tuning, where you are initializing the weights of a network for a new                   

task based on some pre trained weights of another model, and you only fine tune certain                

layers in the new network for the new task. You could now talk about the first setting here,                  

which only trains the classification layer. 

You could also use the pre trained weights as an initialization, and then fine tune the entire                 

network or certain layers at the end of the CNN, not just the classification layer, you could                 

take the last 3 layers or last 4 layers, anything of your choice to fine tune to better model the                    

target task. Which one do you choose depends on your data set size, and how similar is your                  

target task to the source task. 

(Refer Slide Time: 11:05) 

 

Let us see a few possibilities here and see what we can do. If your data set was fundamentally                   

small, and your target and source data sets are fairly similar to each other. What you can do                  

now is because this target and source datasets are similar to each other, you could say that the                  

specialized features are likely to remain the same in both these datasets, for models trained on                

both these datasets.  

So what you can do now is you take the source tasks, generic layers, you take the source tasks                   

special layer, so this entire block that you see in the middle could be an entire pre trained                  

network, such as an Alex net, or Resnet, that you trained on another data set, which we call as                   

a source task. We leave that as it is and we only train you randomly initialize the                 

classification layer alone and train only that one for the outputs in your new task. 
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This is because your data set is small, you feel you may not have enough data to retrain or                   

fine tune all these feature abstraction layers, that as well focus only on training the               

classification layer properly. So in this case, we are initializing the new network with a pre                

trained weights and we are fine tuning only the classification layer. 

(Refer Slide Time: 12:26) 

 

Another setting is where the data set is small and also the target and the source data sets are                   

dissimilar this time, which means the specialized features could still be common. The Edge              

detectors and those kinds of filters could be common for the source and target task. But the                 

specialized features may not really be common between the two tasks.  

What can we do here, we now consider the entire pre trained CNN because we know that the                  

feature maps of the generic layers which are by General layers, we mean the early layers of                 

the CNN, you can consider that from your pre train network, take those feature maps as                

output, and then train another classifier such as support vector machine, or could also be a                

neural network to give you the output for the target task. 

Why are we doing this? Because the data set is small, and the target and source data sets are                   

dissimilar, we cannot use the specialized features of your pre trained network on the source               

task. We now assume that the generic features that we get from the first few layers by                 

features by representations we mean those feature maps for each input. Those generic             

representations, we assume will help us improve performance on a classifier, although the             

data set is small. 
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(Refer Slide Time: 13:57) 

 

A third setting now is when your data set is fundamentally large. When your data set is large,                  

you have some more luxury, you can now use the pre-trained network as a good initialization                

to fine tune the entire network now on the target data set. But you can do a couple of things                    

also intelligently to improve performance.  

While fine tuning, you can keep the learning rate to be quite low. Remember, learning rate is                 

the coefficient of your gradient in your gradient descent method, you can keep your learning               

rate to be quite low, so that your pre trained parameters are not changed significantly. You                

are saying that I still want my overall network weights to be similar to the weights that I                  

learned from my source task. But I have the data, I am going to update it but let me keep the                     

learning rate low so that I do not make too many updates to my weights from what they were                   

from a source task. 

On the other hand, if data set is very different, and the data set is large, there are explicit                   

methods for this, such as what is known as transitive transfer learning or things like that,                

where you can either train from scratch, you do not need to fine tune at all, you can randomly                   

initialize using Clorox initialization and train from scratch on the new target task because you               

have a large data set, you are saying that the target task and the source tasks are not similar to                    

each other so you may as well train from scratch, or use methods such as transitive transfer                 

learning, which is a known method in traditional machine learning and that can help you               

improve performance. 
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The main idea of this discussion is to tell you that the design of architectures for CNNs while                  

we saw a few different designs, it is not trivial to design newer and newer architectures for a                  

given problem. There are many hyper parameters, number of layers with resolution, number             

of filters and also learning hyper parameters to try to come up with the appropriate               

combination for a domain and a task by itself can be a very difficult task.  

And using the idea of transfer learning and fine tuning could help you take an existing                

architecture that has solved a different problem and adapt it to a new problem. This is a very                  

common procedure that people follow to take CNNs to newer domains and newer tasks. 

(Refer Slide Time: 16:33) 

 

For more reading, you can read chapter 9 of the deep learning book and the lecture on                 

transfer learning in CS 231n. And if you are interested, one of the earliest articles that try to                  

study how transferable are features of CNNs, in the context that we just discussed.  
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