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Backpropagation in CNNs 

Having seen an introduction to Convolutional Neural Networks, we saw a couple of new layers 

that you can have in a neural network, a convolutional layer or cooling layer. Now, we ask the 

question with these new layers how does this affect backpropagation the way we saw it earlier? 

(Refer Slide Time: 0:42) 

 

Before we go there, let us revisit our exercise from last class which was given a 32x32x3 image 

and 6 filters of size 5x5x3, what is the dimension of the output volume with a stride of 1 and a 

padding of 0? The answer is straight forward. 𝑊2 =
𝑊1−𝐹+2𝑃 

𝑆
+ 1. The similar formula for 𝐻2 

is simply plugging the values and you get 28x28x6 which is the depth of the output because of 

the number of filters. We did leave behind another question which was if the match pulling 

layer differentiable and how do you back propagate across it and this is something that we will 

visit at the end of this lecture.  
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(Refer Slide Time: 1:37) 

 

Let us now start and try to do backpropagation across a convolutional layer first. A large part 

of this lecture’s content is adapted from Dhruv Batra’s excellent lectures at Georgia Tech.  

(Refer Slide Time: 1:51) 

 

To begin, let us assume a grayscale image, we assume that the number of input channels C=1. 

You should see that this one affects the derivation per se, it just makes it simpler for explaining. 

Also, we are going to assume the number of convolutional filters to be 1 which means the size 

of your output map will of the depth of your output map also be 1. But each convolutional will 

follow the same procedure to be able to computer its gradients. 
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(Refer Slide Time: 2:27) 

 

To start let us consider a single convolutional filter, let us assume the size of that filter to be 

K1xK2. This is applied to an image which is of size N1xN2 and you get an output Y which is 

of size M1xM2. Visually speaking, this is your space, you have an input X, filter W, and output 

Y. From the definition of convolution, we know that an element of the output Y, Y at ij. 

𝑌[𝑖, 𝑗] = ∑ ∑ 𝑋[𝑖 − 𝑎, 𝑗 − 𝑏]𝑊[𝑎, 𝑏]
𝐾2−1
𝑏=0

𝐾1−1
𝑎=0  . 

Note here that we are not placing the filer at the center of the input pixel but a corner. This does 

not matter, it is only to make this expression a little simpler to see. So, we would make the rest 

of the derivation a little simpler to understand.  

(Refer Slide Time: 3:42) 
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We now are given a loss function L which is used to train a CNN. So, for our convolutional 

layer, there are two quantities that we have to compute. One is 
𝜕𝐿

𝜕𝑊
, the gradient of the loss with 

respect to every weight in every filter and 
𝜕𝐿

𝜕𝑋
 which is the loss with respect to every pixel of 

the input because that is necessary to backpropagate further to an earlier layer. We are going 

to try to derive the gradient for each of these quantities using the chain rule.  

(Refer Slide Time: 4:23) 

 

 

Let us start with 
𝜕𝐿

𝜕𝑊
, the gradient with respect to the weights on the filter. To do this let us 

consider one particular weight in the convolutional filter. Let us say that you have 𝑊[𝑎′, 𝑏′] as 

one location on your filter. So, if you have your filter to be W which is K1xK2 dimensions, 

you have one of those values inside them to be 𝑊[𝑎′, 𝑏′]. We now want to compute the gradient 
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of the loss with respect to that particular weight and then this can be generalized to all weights 

in that filter.  

To do this let us ask the question if you used a filter in a convolutional layer which is W, how 

many pixels and which pixels in the output or the next layer Y does that particular weigh value 

affect? Because remember the way backpropagation is done, all the values that a particular 

pixel impacts the next layer we have to accumulate all those gradients back into the gradient at 

that particular pixel. This is what we saw with feed-forward neural networks.  

So, in this case, the question is if we took the weight at a prime be prime, what all pixels in the 

next layers map does that particular weight affect? The answer is every pixel in Y because 

every pixel in Y is obtained by convolution of the filter with the certain location in X. while a 

certain pixel in Y depends only on a few pixels in X, it does depend on every value in W which 

is the filter.  

So, each pixel in the output corresponds to one position of the filter overlapping the input and 

every pixel in the output is a weighted sum of a part of the input image but the weight in the 

filter affects every pixel in the output. 

(Refer Slide Time: 6:47)   

 

Now, let us move forward we now write (
𝜕𝐿

𝜕𝑊[𝑎′,𝑏′]
= ∑ ∑

𝜕𝐿

𝜕𝑌[𝑖,𝑗]

𝜕𝑌[𝑖,𝑗]

𝜕𝑊[𝑎′,𝑏′]

𝑀2−1
𝑗=0

𝑀1−1
𝑖=0 ) : 

𝜕𝐿

𝜕𝑊[𝑎′,𝑏′]
 

given by the summation of the entire dimension of Y, remember Y we said has a dimension of 

M1xM2. So, we have to some overall of these gradients where you have 
𝜕𝐿

𝜕𝑌[𝑖,𝑗]
 which is going 

to be the gradient of the loss until one particular pixel in that next layers map into 
𝜕𝑌[𝑖,𝑗]

𝜕𝑊[𝑎′,𝑏′]
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chain rule. 
𝜕𝐿

𝜕𝑌
 we assume is already known through backpropagation until that particular step. 

Our challenge now for the convolutional layer is to compute 
𝜕𝑌

𝜕𝑊
 in particular 

𝜕𝑌[𝑖,𝑗]

𝜕𝑊[𝑎′,𝑏′]
. That is 

the quantity that we now have to compute to compute this overall gradient of the loss with 

respect to 𝑊[𝑎′, 𝑏′].  

(Refer Slide Time: 7:57) 

 

Let us consider that particular quantity now which is 
𝜕𝑌[𝑖,𝑗]

𝜕𝑊[𝑎′,𝑏′]
. By definition of convolution 

once again we have 𝑌[𝑖, 𝑗] is this follows from the standard definition of convolution this K1, 

K2 is the filter sizes and this your first principles definition of convolution using this we can 

now say 
𝜕𝑌[𝑖,𝑗]

𝜕𝑊[𝑎′,𝑏′]
 can be written as 

𝜕𝑌[𝑖,𝑗]

𝜕𝑊[𝑎′,𝑏′]
 which you now expand 𝑌[𝑖, 𝑗] in terms of the entire 

output that you have from the first equation. So, you have the entire RHS of the first equation 

you put that in there.  

Now, in all these summations here is only one summation one term here that is going to depend 

on 𝑊[𝑎′, 𝑏′]. Remember in one convolution, one particular filter value is converted with only 

1 pixel in the input in that single convolution operation when you move the filter to the next 

location, it may contribute something else in the other location but in one single convolution 

operation, one value in the filter is multiplied by only 1 input pixel and that term now is going 

to be 𝑊[𝑎′, 𝑏′] into 𝑋[𝑖 − 𝑎′, 𝑦 − 𝑏′].  

Every other term in this double summation when you differentiate with respect to 𝑊[𝑎′, 𝑏′] 

will become 0 because it does not depend on 𝑊[𝑎′, 𝑏′]. This quantity trivially becomes 𝑋[𝑖 −

𝑎′, 𝑦 − 𝑏′]. Let us see how to use this.  
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(Refer Slide Time: 9:47) 

 

Let us plug this back end we now have 
𝜕𝐿

𝜕𝑊[𝑎′,𝑏′]
 equal to summation over all the pixels in Y, 

𝜕𝐿

𝜕𝑌
  

for every pixel in Y into the second term which we just compute on the previous slide which 

turns out to be 𝑋[𝑖 − 𝑎′, 𝑦 − 𝑏′] look carefully this is now the convolution of X and 
𝜕𝐿

𝜕𝑌
 which 

is beautiful. (
𝜕𝐿

𝜕𝑊[𝑎′,𝑏′]
= ∑ ∑

𝜕𝐿

𝜕𝑌[𝑖,𝑗]
𝑋[𝑖 − 𝑎′, 𝑦 − 𝑏′] 

𝑀2−1
𝑗=0

𝑀1−1
𝑖=0 ) 

𝜕𝐿

𝜕𝑌
 remember is also going to have the dimensions of Y it also that gradient that set of gradients 

will look like an MH because you have a gradient of the loss with respect to every pixel in Y. 

So, that is going to form one matrix and X is a matrix by itself the convolution of X and  
𝜕𝐿

𝜕𝑌
 is 

𝜕𝐿

𝜕𝑊[𝑎′,𝑏′]
. So, you can compute this as a convolution in the back-propagation step.  
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(Refer Slide Time: 10:52) 

 

Let us now move on to the next quantity which is
𝜕𝐿

𝜕𝑋
, gradient with respect to inputs of that 

layer of that Convolutional layer. Let us once again consider a single input pixel 𝑋[𝑖′, 𝑗′]. Let 

us again ask the question which pixels in Y would be affected by this particular pixel in X? If 

we see it visually we can say that given an X and let us say there is 1 pixel given by this red 

square which is at [𝑖′, 𝑗′] when it is convolved with W you would now have this it would affect 

this entire range of pixels that go from [𝑖′, 𝑗′] to [𝑖′ + 𝐾1 − 1, 𝑗′ + 𝐾2 − 1].  

Why is it like this, why is it not centered at [𝑖′, 𝑗′]? Because that is the way we define 

convolution in this context for simplicity. If we had defined convolution as going from −
𝐾1

2⁄  

to plus −
𝐾1

2⁄  it would have been centered but because this is the way we defined convolution 

the indices went from 0 to 𝐾1 − 1 and b to 𝐾2 − 1. You would now have these pixels here 

represented by this dotted square which are the pixels that would be affected by [𝑖′, 𝑗′].  

Now, we call this region P and we now know that the gradients of the loss with respect to these 

pixels will be influencing the gradient of the loss with respect to this pixel. All other pixels in 

Y do not have a contribution from this pixel and hence those gradients of L with respect to Y 

do not matter to us. 
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(Refer Slide Time: 12:44) 

 

 

Let us now say 
𝜕𝐿

𝜕𝑋[𝑖′,𝑗′]
= ∑ ,

𝜕𝐿

𝜕𝑌[𝑝]
 

𝜕𝑌[𝑝]

𝜕𝑋[𝑖′,𝑗′]
.𝑝∈𝑃  From the figure in the previous slide, we can 

now define that region P as going from 0 to 𝐾1 − 1, b going from 0 to 𝐾2 − 1. 𝜕𝐿 at a particular 

pixel 𝑌[𝑖′ + 𝑎, 𝑗′ + 𝑏] and the derivative of 𝑌[𝑖′ + 𝑎, 𝑗′ + 𝑏] with respect to 𝑋[𝑖′, 𝑗′] rather, if 

you see the previous slide we are taking each pixel here and adding them and all I am saying 

is that we want a gradient of a particular pixel in this region P with respect to this pixel at in X 

that is what we are writing in the summation. 

The left quantity here is known because we assume that all the 𝜕𝑌 until 𝜕𝑌 are known until 

that time we are only worried about how to compute the back prop across a single convolutional 

layer. If there were more convolutional layers the same procedures would be applied iteratively. 
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But the second quantity here is currently not known to us 
𝜕𝑌[𝑖′+𝑎,𝑗′+𝑏] 

𝜕𝑋[𝑖′,𝑗′]
. Let us try to compute 

this on the next slide. 

(Refer Slide Time: 14:17)  

 

From the definition of convolution once again we have 𝑌[𝑖′, 𝑗′] given by this equation this 

comes again comes from the basic definition of convolution. So, if this was the definition of 

𝑋[𝑖′, 𝑗′] then the definition of 𝑌[𝑖′ + 𝑎, 𝑗′ + 𝑏], which is going to be another pixel location will 

be replaced wherever 𝑖′is thereby 𝑖′ + 𝑎, replace where ever 𝑗′ is thereby 𝑗′ + 𝑏. So, 𝑖′ + 𝑎 a 

becomes 𝑖′, 𝑗′ + 𝑏 − 𝑏 becomes 𝑗′ and 𝑊[𝑎, 𝑏] stays as it is.  

Now, the 
𝜕𝑌[𝑖′+𝑎,𝑗′+𝑏]

𝜕𝑋[𝑖′,𝑗′]
= 𝑊[𝑎, 𝑏] for a particular choice of a and b, for a different choice of a 

and b it would be that term in the summation as we said the last for the previous derivative 
𝜕𝐿

𝜕𝑊
 

also, all the other terms in the summation would not affect the derivative with respect to 1 

particular a, b. So, this is the quantity that we have for 𝜕𝑌 at a particular pixel location with 

respect to 𝜕𝑋[𝑖′, 𝑗′]. Let us now plug this back    
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(Refer Slide Time: 15:45) 

 

We have 
𝜕𝐿 

𝜕𝑋[𝑖′,𝑗′]
 to be friends all the pixels in the region P 

𝜕𝐿 

𝜕𝑌
 at one of those pixels into 𝑊[𝑎, 𝑏] 

for this choice of a and b. Once again, this becomes interesting. This looks like the definition 

of cross-correlation. It is the cross-correlation of 
𝜕𝐿 

𝜕𝑌
 with W, the filter. Rather, we can say it is 

the convolution of the filter flipped with 
𝜕𝐿 

𝜕𝑌
. 

We know that cross-correlation and convolution are it differ by that flip of the filter and that 

become by a flip by 180 degrees which is a flip in 2 directions and that is what now we have 

here, 
𝜕𝐿 

𝜕𝑌
 into a double convolution with a double flipped filter. This is interesting again because 

even now the chain rule across the convolutional layer to compute 
𝜕𝐿 

𝜕𝑋
 can be computed as a 

convolution.  

Why does this matter? Recall our discussion of image frequencies in the first week. We said 

that convolution can be evaluated through very efficient methods such as fast Fourier 

transform. You could use all that to efficiently compute these gradients during backpropagation 

in this step.  
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(Refer Slide Time: 17:22) 

 

Now, we are felt with one question, so that defines, that concludes how backpropagation is 

done across a convolutional layer. There are only 2 quantities W and X. We are now still a felt 

with how do you backpropagate across a pooling layer? As we said before, a pooling layer is 

parameter-free. It does not have any weights. There are no weights to updates, no gradients. 

The only gradients we have to compute are the gradients with respect to X in the previous layer 

to allow the gradients to propagate through to earlier layers. 

How do we do this? If we have max pooling, let us take this visual example on the right. So, 

you can see here that these red, green, yellow, and blue regions are max pooled in the forward 

pass, 1156, the max value is 6. 2478, the max value is 8. 3212, the max value is 3. 1034, the 

max value is 4. So, in the forward propagation, for every 2x2 region, you take the max element 

and put it here and then you take it further through later layers.  

In the back-prop step, in the same layer, you keep track of what was the winning position in 

each 2x2 window. For example, we know that 6 came from this position of the first two crosses 

2 windows. So, whatever gradient we have at 6 when we backpropagate goes to that location 

in the previous layer, backpropagation is drawn the other way here but this is the previous 

layer, what you see on the right here is the previous layer.  

The full gradient at 6, remember we assume that when we backpropagate, the gradients until 

this step for each of this pixel is known to us, we only have to see how to backpropagate those 

gradients across the pooling layer. All these gradients go to this location, all these gradients go 

to this location, all these gradients go to this location because that was the position of the 

winning neuron and similarly for this to this.  
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What happens if we did not use max-pooling? If we use say, average pooling? If we used 

average pooling, you would take whatever gradient came into one particular location say the 

position of 6, distribute hat gradient equally to each of these 4 locations in case of 2x2 pooling. 

If you did 3x3 pooling, you would divide that among 9 pixels. In this case, we have 2x2 pooling, 

so whatever gradient you have at 6 will be divided into 4 and that gradient would be given to 

each of these pixels in the 2x2 neighborhood that led to 6 and that is how backpropagation is 

done across pooling layers.  

(Refer Slide Time: 20:23) 

 

That concludes our discussion of backpropagation in CNNs. For more details please read the 

lecture notes of Dhruv Batra on the same topic or a very nice write-up by Jefkine on 

Backpropagation in CNNs. 

771


