
Deep Learning for Computer Vision

Professor Vineeth N Balasubramanian

Department of Computer Science and Engineering

Indian Institute of Technology, Hyderabad

Lecture No. 33

Backpropagation in CNNs

Having seen an introduction to Convolutional Neural Networks, we saw a couple of new layers

that you can have in a neural network, a convolutional layer or cooling layer. Now, we ask the

question with these new layers how does this affect backpropagation the way we saw it earlier?

(Refer Slide Time: 0:42)

Before we go there, let us revisit our exercise from last class which was given a 32x32x3 image

and 6 filters of size 5x5x3, what is the dimension of the output volume with a stride of 1 and a

padding of 0? The answer is straight forward. 𝑊2 =
𝑊1−𝐹+2𝑃

𝑆
+ 1. The similar formula for 𝐻2

is simply plugging the values and you get 28x28x6 which is the depth of the output because of

the number of filters. We did leave behind another question which was if the match pulling

layer differentiable and how do you back propagate across it and this is something that we will

visit at the end of this lecture.

759

(Refer Slide Time: 1:37)

Let us now start and try to do backpropagation across a convolutional layer first. A large part

of this lecture’s content is adapted from Dhruv Batra’s excellent lectures at Georgia Tech.

(Refer Slide Time: 1:51)

To begin, let us assume a grayscale image, we assume that the number of input channels C=1.

You should see that this one affects the derivation per se, it just makes it simpler for explaining.

Also, we are going to assume the number of convolutional filters to be 1 which means the size

of your output map will of the depth of your output map also be 1. But each convolutional will

follow the same procedure to be able to computer its gradients.

760

(Refer Slide Time: 2:27)

To start let us consider a single convolutional filter, let us assume the size of that filter to be

K1xK2. This is applied to an image which is of size N1xN2 and you get an output Y which is

of size M1xM2. Visually speaking, this is your space, you have an input X, filter W, and output

Y. From the definition of convolution, we know that an element of the output Y, Y at ij.

𝑌[𝑖, 𝑗] = ∑ ∑ 𝑋[𝑖 − 𝑎, 𝑗 − 𝑏]𝑊[𝑎, 𝑏]
𝐾2−1
𝑏=0

𝐾1−1
𝑎=0 .

Note here that we are not placing the filer at the center of the input pixel but a corner. This does

not matter, it is only to make this expression a little simpler to see. So, we would make the rest

of the derivation a little simpler to understand.

(Refer Slide Time: 3:42)

761

We now are given a loss function L which is used to train a CNN. So, for our convolutional

layer, there are two quantities that we have to compute. One is
𝜕𝐿

𝜕𝑊
, the gradient of the loss with

respect to every weight in every filter and
𝜕𝐿

𝜕𝑋
 which is the loss with respect to every pixel of

the input because that is necessary to backpropagate further to an earlier layer. We are going

to try to derive the gradient for each of these quantities using the chain rule.

(Refer Slide Time: 4:23)

Let us start with
𝜕𝐿

𝜕𝑊
, the gradient with respect to the weights on the filter. To do this let us

consider one particular weight in the convolutional filter. Let us say that you have 𝑊[𝑎′, 𝑏′] as

one location on your filter. So, if you have your filter to be W which is K1xK2 dimensions,

you have one of those values inside them to be 𝑊[𝑎′, 𝑏′]. We now want to compute the gradient

762

of the loss with respect to that particular weight and then this can be generalized to all weights

in that filter.

To do this let us ask the question if you used a filter in a convolutional layer which is W, how

many pixels and which pixels in the output or the next layer Y does that particular weigh value

affect? Because remember the way backpropagation is done, all the values that a particular

pixel impacts the next layer we have to accumulate all those gradients back into the gradient at

that particular pixel. This is what we saw with feed-forward neural networks.

So, in this case, the question is if we took the weight at a prime be prime, what all pixels in the

next layers map does that particular weight affect? The answer is every pixel in Y because

every pixel in Y is obtained by convolution of the filter with the certain location in X. while a

certain pixel in Y depends only on a few pixels in X, it does depend on every value in W which

is the filter.

So, each pixel in the output corresponds to one position of the filter overlapping the input and

every pixel in the output is a weighted sum of a part of the input image but the weight in the

filter affects every pixel in the output.

(Refer Slide Time: 6:47)

Now, let us move forward we now write (
𝜕𝐿

𝜕𝑊[𝑎′,𝑏′]
= ∑ ∑

𝜕𝐿

𝜕𝑌[𝑖,𝑗]

𝜕𝑌[𝑖,𝑗]

𝜕𝑊[𝑎′,𝑏′]

𝑀2−1
𝑗=0

𝑀1−1
𝑖=0) :

𝜕𝐿

𝜕𝑊[𝑎′,𝑏′]

given by the summation of the entire dimension of Y, remember Y we said has a dimension of

M1xM2. So, we have to some overall of these gradients where you have
𝜕𝐿

𝜕𝑌[𝑖,𝑗]
 which is going

to be the gradient of the loss until one particular pixel in that next layers map into
𝜕𝑌[𝑖,𝑗]

𝜕𝑊[𝑎′,𝑏′]

763

chain rule.
𝜕𝐿

𝜕𝑌
 we assume is already known through backpropagation until that particular step.

Our challenge now for the convolutional layer is to compute
𝜕𝑌

𝜕𝑊
 in particular

𝜕𝑌[𝑖,𝑗]

𝜕𝑊[𝑎′,𝑏′]
. That is

the quantity that we now have to compute to compute this overall gradient of the loss with

respect to 𝑊[𝑎′, 𝑏′].

(Refer Slide Time: 7:57)

Let us consider that particular quantity now which is
𝜕𝑌[𝑖,𝑗]

𝜕𝑊[𝑎′,𝑏′]
. By definition of convolution

once again we have 𝑌[𝑖, 𝑗] is this follows from the standard definition of convolution this K1,

K2 is the filter sizes and this your first principles definition of convolution using this we can

now say
𝜕𝑌[𝑖,𝑗]

𝜕𝑊[𝑎′,𝑏′]
 can be written as

𝜕𝑌[𝑖,𝑗]

𝜕𝑊[𝑎′,𝑏′]
 which you now expand 𝑌[𝑖, 𝑗] in terms of the entire

output that you have from the first equation. So, you have the entire RHS of the first equation

you put that in there.

Now, in all these summations here is only one summation one term here that is going to depend

on 𝑊[𝑎′, 𝑏′]. Remember in one convolution, one particular filter value is converted with only

1 pixel in the input in that single convolution operation when you move the filter to the next

location, it may contribute something else in the other location but in one single convolution

operation, one value in the filter is multiplied by only 1 input pixel and that term now is going

to be 𝑊[𝑎′, 𝑏′] into 𝑋[𝑖 − 𝑎′, 𝑦 − 𝑏′].

Every other term in this double summation when you differentiate with respect to 𝑊[𝑎′, 𝑏′]

will become 0 because it does not depend on 𝑊[𝑎′, 𝑏′]. This quantity trivially becomes 𝑋[𝑖 −

𝑎′, 𝑦 − 𝑏′]. Let us see how to use this.

764

(Refer Slide Time: 9:47)

Let us plug this back end we now have
𝜕𝐿

𝜕𝑊[𝑎′,𝑏′]
 equal to summation over all the pixels in Y,

𝜕𝐿

𝜕𝑌

for every pixel in Y into the second term which we just compute on the previous slide which

turns out to be 𝑋[𝑖 − 𝑎′, 𝑦 − 𝑏′] look carefully this is now the convolution of X and
𝜕𝐿

𝜕𝑌
 which

is beautiful. (
𝜕𝐿

𝜕𝑊[𝑎′,𝑏′]
= ∑ ∑

𝜕𝐿

𝜕𝑌[𝑖,𝑗]
𝑋[𝑖 − 𝑎′, 𝑦 − 𝑏′]

𝑀2−1
𝑗=0

𝑀1−1
𝑖=0)

𝜕𝐿

𝜕𝑌
 remember is also going to have the dimensions of Y it also that gradient that set of gradients

will look like an MH because you have a gradient of the loss with respect to every pixel in Y.

So, that is going to form one matrix and X is a matrix by itself the convolution of X and
𝜕𝐿

𝜕𝑌
 is

𝜕𝐿

𝜕𝑊[𝑎′,𝑏′]
. So, you can compute this as a convolution in the back-propagation step.

765

(Refer Slide Time: 10:52)

Let us now move on to the next quantity which is
𝜕𝐿

𝜕𝑋
, gradient with respect to inputs of that

layer of that Convolutional layer. Let us once again consider a single input pixel 𝑋[𝑖′, 𝑗′]. Let

us again ask the question which pixels in Y would be affected by this particular pixel in X? If

we see it visually we can say that given an X and let us say there is 1 pixel given by this red

square which is at [𝑖′, 𝑗′] when it is convolved with W you would now have this it would affect

this entire range of pixels that go from [𝑖′, 𝑗′] to [𝑖′ + 𝐾1 − 1, 𝑗′ + 𝐾2 − 1].

Why is it like this, why is it not centered at [𝑖′, 𝑗′]? Because that is the way we define

convolution in this context for simplicity. If we had defined convolution as going from −
𝐾1

2⁄

to plus −
𝐾1

2⁄ it would have been centered but because this is the way we defined convolution

the indices went from 0 to 𝐾1 − 1 and b to 𝐾2 − 1. You would now have these pixels here

represented by this dotted square which are the pixels that would be affected by [𝑖′, 𝑗′].

Now, we call this region P and we now know that the gradients of the loss with respect to these

pixels will be influencing the gradient of the loss with respect to this pixel. All other pixels in

Y do not have a contribution from this pixel and hence those gradients of L with respect to Y

do not matter to us.

766

(Refer Slide Time: 12:44)

Let us now say
𝜕𝐿

𝜕𝑋[𝑖′,𝑗′]
= ∑ ,

𝜕𝐿

𝜕𝑌[𝑝]

𝜕𝑌[𝑝]

𝜕𝑋[𝑖′,𝑗′]
.𝑝∈𝑃 From the figure in the previous slide, we can

now define that region P as going from 0 to 𝐾1 − 1, b going from 0 to 𝐾2 − 1. 𝜕𝐿 at a particular

pixel 𝑌[𝑖′ + 𝑎, 𝑗′ + 𝑏] and the derivative of 𝑌[𝑖′ + 𝑎, 𝑗′ + 𝑏] with respect to 𝑋[𝑖′, 𝑗′] rather, if

you see the previous slide we are taking each pixel here and adding them and all I am saying

is that we want a gradient of a particular pixel in this region P with respect to this pixel at in X

that is what we are writing in the summation.

The left quantity here is known because we assume that all the 𝜕𝑌 until 𝜕𝑌 are known until

that time we are only worried about how to compute the back prop across a single convolutional

layer. If there were more convolutional layers the same procedures would be applied iteratively.

767

But the second quantity here is currently not known to us
𝜕𝑌[𝑖′+𝑎,𝑗′+𝑏]

𝜕𝑋[𝑖′,𝑗′]
. Let us try to compute

this on the next slide.

(Refer Slide Time: 14:17)

From the definition of convolution once again we have 𝑌[𝑖′, 𝑗′] given by this equation this

comes again comes from the basic definition of convolution. So, if this was the definition of

𝑋[𝑖′, 𝑗′] then the definition of 𝑌[𝑖′ + 𝑎, 𝑗′ + 𝑏], which is going to be another pixel location will

be replaced wherever 𝑖′is thereby 𝑖′ + 𝑎, replace where ever 𝑗′ is thereby 𝑗′ + 𝑏. So, 𝑖′ + 𝑎 a

becomes 𝑖′, 𝑗′ + 𝑏 − 𝑏 becomes 𝑗′ and 𝑊[𝑎, 𝑏] stays as it is.

Now, the
𝜕𝑌[𝑖′+𝑎,𝑗′+𝑏]

𝜕𝑋[𝑖′,𝑗′]
= 𝑊[𝑎, 𝑏] for a particular choice of a and b, for a different choice of a

and b it would be that term in the summation as we said the last for the previous derivative
𝜕𝐿

𝜕𝑊

also, all the other terms in the summation would not affect the derivative with respect to 1

particular a, b. So, this is the quantity that we have for 𝜕𝑌 at a particular pixel location with

respect to 𝜕𝑋[𝑖′, 𝑗′]. Let us now plug this back

768

(Refer Slide Time: 15:45)

We have
𝜕𝐿

𝜕𝑋[𝑖′,𝑗′]
 to be friends all the pixels in the region P

𝜕𝐿

𝜕𝑌
 at one of those pixels into 𝑊[𝑎, 𝑏]

for this choice of a and b. Once again, this becomes interesting. This looks like the definition

of cross-correlation. It is the cross-correlation of
𝜕𝐿

𝜕𝑌
 with W, the filter. Rather, we can say it is

the convolution of the filter flipped with
𝜕𝐿

𝜕𝑌
.

We know that cross-correlation and convolution are it differ by that flip of the filter and that

become by a flip by 180 degrees which is a flip in 2 directions and that is what now we have

here,
𝜕𝐿

𝜕𝑌
 into a double convolution with a double flipped filter. This is interesting again because

even now the chain rule across the convolutional layer to compute
𝜕𝐿

𝜕𝑋
 can be computed as a

convolution.

Why does this matter? Recall our discussion of image frequencies in the first week. We said

that convolution can be evaluated through very efficient methods such as fast Fourier

transform. You could use all that to efficiently compute these gradients during backpropagation

in this step.

769

(Refer Slide Time: 17:22)

Now, we are felt with one question, so that defines, that concludes how backpropagation is

done across a convolutional layer. There are only 2 quantities W and X. We are now still a felt

with how do you backpropagate across a pooling layer? As we said before, a pooling layer is

parameter-free. It does not have any weights. There are no weights to updates, no gradients.

The only gradients we have to compute are the gradients with respect to X in the previous layer

to allow the gradients to propagate through to earlier layers.

How do we do this? If we have max pooling, let us take this visual example on the right. So,

you can see here that these red, green, yellow, and blue regions are max pooled in the forward

pass, 1156, the max value is 6. 2478, the max value is 8. 3212, the max value is 3. 1034, the

max value is 4. So, in the forward propagation, for every 2x2 region, you take the max element

and put it here and then you take it further through later layers.

In the back-prop step, in the same layer, you keep track of what was the winning position in

each 2x2 window. For example, we know that 6 came from this position of the first two crosses

2 windows. So, whatever gradient we have at 6 when we backpropagate goes to that location

in the previous layer, backpropagation is drawn the other way here but this is the previous

layer, what you see on the right here is the previous layer.

The full gradient at 6, remember we assume that when we backpropagate, the gradients until

this step for each of this pixel is known to us, we only have to see how to backpropagate those

gradients across the pooling layer. All these gradients go to this location, all these gradients go

to this location, all these gradients go to this location because that was the position of the

winning neuron and similarly for this to this.

770

What happens if we did not use max-pooling? If we use say, average pooling? If we used

average pooling, you would take whatever gradient came into one particular location say the

position of 6, distribute hat gradient equally to each of these 4 locations in case of 2x2 pooling.

If you did 3x3 pooling, you would divide that among 9 pixels. In this case, we have 2x2 pooling,

so whatever gradient you have at 6 will be divided into 4 and that gradient would be given to

each of these pixels in the 2x2 neighborhood that led to 6 and that is how backpropagation is

done across pooling layers.

(Refer Slide Time: 20:23)

That concludes our discussion of backpropagation in CNNs. For more details please read the

lecture notes of Dhruv Batra on the same topic or a very nice write-up by Jefkine on

Backpropagation in CNNs.

771

