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Having reviewed convolution so far, let us try to ask the question, what is the connection 

between convolution and neural networks? If we want to use it on images, can’t we use feed-

forward neural networks? We will try to understand this more carefully by taking the example of 

image classification.  
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Let us try to understand how traditional machine learning was done earlier on computer vision. 

Given an image, traditional ML-based computer vision solutions for image classification would 

extract somewhat are known as handcrafted features from images, examples being SIFT, LBP, 

HoG, so on and so forth. Why are they called handcrafted? Because we came up with a 

procedure to extract those features, using some thought processes and heuristics. These were 

effective for quite a while.  

But it was a bottleneck of scaling the solutions to more datasets and scaling the solutions to more 

real-world images. One would be given an image, you see the raw pixels, or extract edges, or 

extract features such as SIFT and HoG. It could be many others. This was known as Static 

Feature Engineering, where there was no machine learning or learning involved at all. These 

features were then provided to a classifier, such as a neural network, to finally give the output as 

say monument in this case.  
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The question that we try to ask now is, instead of those handcrafted kernels, for edge detection 

for SIFT or any other method, can we learn meaningful kernels or filters to solve the problem? In 

addition to learning the weights or the parameters of the classifier? Rather, if you have an edge 

detector, which is a Laplacian of Gaussian, which has certain weights in its kernel, or any other 

kernel for that matter, can we automatically learn these weights as part of the learning algorithm, 

rather than separate these 2 as the first step is hand-engineered, and the second step being 

learning step. That is one of the first questions we ask. 

We could go even better and ask, can we learn multiple meaningful filters or kernels in addition 

to learning the weights of the classifier? Why just learn one, if we are learning, we may as well 

learn many of them.  
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And in addition to that, can we also learn multiple layers of meaningful kernels and filters? We 

now know that convolution has some nice mathematical properties. And you can compose have a 

composition of convolution operations across different layers of a neural network. So, can we do 

that, in can we use that in some way to learn multiple layers of meaningful kernels or filters, 

before we learn the weights of the classifier or along with learning the weights of the classifier? 

This is possible. And this is possible by simply treating the kernels weights of the kernel 

coefficients as parameters and learning them, in addition to learning the weights of the final 

classifier.  

So, you have to have you would have an input, you would have a convolution kernel, that gives 

you a certain output map, which becomes a second layer, you could have another convolution 

kernel, which would give you an output, which would give you the feature map at the third layer. 

And this can now be used as input to a final layer of fully connected neurons, which give us the 

final output. And we can use backpropagation to update these filter coefficients at each 

intermediate step. This network is called a convolution neural network.  

Why is that so? Because in each step, instead of taking a fully-connected bipartite graph to 

connect the first layer, the next layer, we are going to define a set of weights, which convolve on 

the input image and given output feature map and we are going to learn those weights using 

backpropagation.  
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Let us try to pause here and ask 1 or 2 questions again. So, learning filters seems interesting. But 

why not use flattened images with fully connected neural networks? Why do we want to 

complicate our lives and learn the filters? Why cannot we just take the raw pixels of the input 

image? Anyway, the neural network is going to learn the weights it should? Why should we? 

Why should that be a convolution operation in between? Why cannot the neural network simply 

take the pixels of the images as flatten them out and give them as the input to a neural network 

and let the layers learn whatever they should? Why cannot we do this?  

(Refer Slide Time: 5:48) 
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There are a few reasons let us try to evaluate them. If you take even a simple data set, such as 

what is known as the MNIST data set, so this is an example of the MNIST data set. The MNIST 

data set, as we mentioned earlier, is a data set for handwritten digits, which was used, which was 

used by the United States Postal Service in the 90s to automatically classify mail, based on zip 

code recognition from images.  

So, if you use a feed-forward neural network without convolution, or without learning the filters 

on a data set such as MNIST, you get fairly good performance, close to about 98 percent, 90 

percent performance with a simple feed-forward network. But there are certain limitations, and 

let us try to analyze them. The first limitation is this method ignores spatial correlations or the 

structures in images.  

By taking pixels and flattening all of them into a single vector, we have removed the spatial 

relationships that exist in different parts of the image or different corners of the image. Spatially 

separate pixels are treated the same way, as adjacent pixels, we seem to be losing some important 

information that characterizes images. By doing this, that is the first concern.  

The second concern here is, there is no obvious way for networks to learn the same features at 

different places in the input image. Unlike a few other machine learning problems in images, one 

is expected to recognize a cat on the image, whether the cat was located on the left top or the 

bottom right. If we simply flattened an image into a vector, a cat on the left top would have a 

very different vector representation, the dimensions in which the cat exists would be very 

different from a flattened vector when the cat was on the bottom right.  

We are not enforcing the network to learn that a cat is a cat, irrespective of where it is in the 

image. And lastly, it can get computationally very expensive if you took an image, flattened it, 

and only used a fully connected feed-forward neural network. Why is that so? Let us take an 

example. If you had a 1-megapixel color image with 20 neurons in the first hidden layer, how 

many weights would you have in the first layer?  

Think about it. And the answer is 60 million. 1 megapixel is 10 power 6 pixels. Color image, 3 

channels, so that is 3 million pixels into 20 neurons, a fully connected graph is going to end up 

with 60 million weights in only the first layer, you now have to add layers probably for getting 

better performance and that is going to lead to an explosion in the number of weights.  
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So, how do we overcome this? We overcome this by using the idea of convolution, where we 

know that a filter only operates on a local neighborhood in the original image. We call these 

local receptive fields. Rather the region of the input which is used for convolution is typically 

known as the receptive field. So, that receptive field is a local part of the image. So, each hidden 

unit of the next layer is connected to only 1 local part of the input image.  

This serves a few purposes. Firstly, it captures spatial relationships because if you do 

convolution of a filter with a patch, you are capturing the 2D spatial relationships in that region. 

And such relationships may not be captured by feed-forward neural networks effectively, it 

greatly reduces the number of parameters in the model. Because now you only need to connect to 

a local region rather than have to have a fully connected graph where every neuron in the first 

layer is connected to every neuron in the second layer.  

So, now if we take the same example, if you had a 1-megapixel colored image, and let us assume 

now that you have a filter size of K1xK2 that you want to learn in that first hidden layer, how 

many weights would you have now? The number of weights would simply be the size of the 

filter itself. As we said, when you use convolution in a neural network, the filter coefficients 

themselves become the weights. So in this case, the number of weights would be K1xK2 

compare with the 60 million that we talked about feedforward networks on the previous slide.  
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Secondly, convolution neural networks introduce a concept of what is known as weight sharing. 

Weight sharing is, you take a filter, whether you convolve it with the top right, or the bottom left. 

You use the same values in the filter, you do not change the filter weights when you convolve 

with the top left, and when you convolve with the bottom right, which is what you would have 

done if you flattened out an image and used a fully connected layer to estimate the weights in 

that particular layer. This has 2 purposes too.  

Firstly, as we just mentioned, it enables translation invariance of the neural network to objects in 

images. So as I said, whether the cat was on the left top or the bottom right, it is the same 

weights that are operating on them. So, it would recognize a cat be it in whichever part of the 

image. Secondly, it reduces the number of parameters in the model, as we just say. A third thing 

that CNNs also do is known as pooling. Pooling serves to condense information from the 

previous layer. This also serves 2 purposes.  

One, by condensing information, it aggregates information, especially minor variations that are 

kind of average out to get a common output in the next layer. Secondly, pooling ends up 

subsampling an original image into a smaller image in the next layer. And by doing that, the next 

layer, when convolution is applied on that next layer, the number of convolutions you have to do 

reduces, which reduces the number of computations in later layers of the CNN.  
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Let us look at each of these in more detail. Now. Let us start with local receptive fields. So to 

recap, CNNs have local receptive fields, weight sharing, and pooling. Let us review each of them 

in sequence. Let us start with the local receptive field. So, if we used a regular feed-forward 

neural network, it would look something like this. So, your input is these red neurons. Here, your 

input is a handwritten digit image.  

Let us assume that you have because there are 16 pixels here, you have 16 input neurons. And 

then the blue squares here are the neurons in intermediate layers. And finally, on the output 

layer, you have 10 green neurons, which correspond to the 10 digits that you have. You can see 

here that every input neuron is connected to each hidden layer neuron here in the first hidden 

layer. So, that is a dense connection. So, and if you are now connected to all the input pixels in 

the first hidden layer, and so on, this becomes a very dense collection of weights, as we just 

mentioned. Let us contrast this with what happens if we do convolution.  
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So, if you observe here in this figure, once again, the input is 16 input neurons because that is the 

size of the input image. But now, only pixels 1, 2, 5, and 6. So, these 4 neurons here are the ones 

that contribute to the first convolution, pixels 3 and 4, and 7 and 8 do not contribute to that first 

convolution. So, only pixels 1, 2, 5 and 6, contribute to the computation of h11 which is the first 

pixel in the hidden layer.  

Similarly, as you move forward, you have a similar number of operations for each of your pixels 

in the hidden layer. How does this help? The connections now are much sparser. This past 

connectivity automatically reduces the number of weights, you have to learn, as we just 

mentioned. Importantly, we are also taking advantage of the structure of the image. As you can 

see, here, it is 1, 2, 5, and 6, that is part that participates in the h11 output, and 1, 2, 5, 6 are 

spatially correlated as compared to 1, 2, 3, 4, 7, 8 for instance. That is another advantage of the 

local receptive field.  
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One question you could ask here is, but is sparse connectivity, really a good thing? Would not it 

be better to have full connections? Assuming we have infinite compute bandwidth and storage 

bandwidth and let the neural network learn what it should? By having sparse connections are we 

not disallowing certain pixels to interact and contribute to the output of the next layer? The 

answer is not really, we do not lose information through this process. Because as we go through 

the depth of such a neural network, if you look at the 2 highlighted neurons x1 and x5.  

Here, they may not interact, when we consider the first hidden layer, but they may start 

interacting to later hidden layers indirectly because x1 contributes to h2; x1, x2, x3 contribute to 

h2, and h2 and h4, where h4 gets input from x5, contribute in the successive layer, and indirectly 

x1 and x5 interact, or the depth of the neural network. So, we are not losing out on this 

information, as long as we have a few layers in the neural network.  
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The second is weight sharing. Let us try to understand this with an example. Again, let us say 

that pixels 1, 2, 5, 6 are connected through a set of weights to that first-pixel hidden neuron in the 

first hidden layer. And similarly, the last 4 pixels, are certain numbers 15, 16, 11, and 12. They 

are connected to the last pixel of that hidden neuron. We would like to ask the question, do we 

want these kernel weights to be different? Do we want them to be a different set of weights here 

and a different set of weights here?  

The answer is no. We would want that filter to respond to an object or an artifact in the image, in 

the same way, irrespective of where it is present in the image. So, this is known as translation 

invariance. So, we want our neural network to be invariant to the translation of an object in an 

image from one position to another position. Secondly, we can also have different kernels to 

capture a different kinds of artifacts. So, it is not required that you must have 1 kernel for the 

first half first, top left part, and another kernel for the bottom right part, you have the same 

kernel, and you have another kernel to capture another kind of an artifact, maybe one of them 

will capture the value for a person, another of them will capture the nose of a person.  

This idea of having the same weights for all parts of your input, which is deep, which comes as a 

default from convolution is known as weight sharing. This also reduces the number of 

parameters.  
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Let us now try to see how our CNN looks in completion. Here is a sample CNN convolution 

neural network, given an input, you have a convolution on layer 1, which can have many filters. 

So stride is 1, size of the filter F=5x5, K=6. That is the number of filters. So, the number of 

feature maps so the depth of the output in that first layer, P is equal to 0 paddings is equal to 0. 

And the total number of parameters that you see here is 150, parameters 150 here. Then you have 

something called a pooling layer, and then a convolution layer, then a pooling layer.  

And then you have what is known as FC layers or fully connected layers. Let us now try to 

understand what these pooling layers in between are. So, you can see here that most CNNs have 

alternate convolution and pooling layers, at least the initial CNN that was designed had it this 

way. These days, there are other options, more layers that you can fit in into an architecture of 

CNN, which we will revisit later in this week's lectures. Let us now try to understand what a 

pooling layer does? 
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A pooling layer is a parameter-free downsampling operation, subsampling, or a downsampling 

operation, and it is parameter-free, with no weights involved, you do not need to learn any 

weights in this particular layer. Let us see an example of one such pooling operation. So, you can 

see here that this could be a feature map, or it could be an output of a convolution step, which is 

a feature map in one of the hidden layers, which have switches of size, say 4x4 if we now try to 

do what is known as max pooling with stride, 2, here is how it would look.  

See here, that you get 1, 4, 5, and 8, you do what is known as max pooling, which means you 

take the maximum value from that, which is 8, and you put that here. Then you do a stride 2, 

which means you skip 1 pixel in between and then go to the next 1. Once again, you take this 

2x2 window, the max value, there is 4, and you put the 4 here. If you see down, we have the 

same max pool operation, same 2 cross 2 filters, but now with a stride of 1.  

So, when you stride 1, you go to the immediate neighbor, and you do not skip a step and go to 

pixels later. So in this case, you can have 8 as the max pool pixel here. And similarly, when you 

go to the next step, the maximum value, here again, is 8, and you put 8 in the corresponding 

output in that layer. Let us complete this operation. Similarly, you go to the next step, and you 

have to stride you're to go to the next row in stride 1, you now have to still complete that row.  

And you keep repeating this over every step, all that you have to do is in that 2 by 2 window that 

you are looking no weights involved, simply take the max element and put it in that position in 
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the next layer. As you can see, this turns out to become a sub-sampling operation, which means it 

would reduce the size of whatever image or feature map that you had here to a smaller size based 

on your choice of filters, and choice of stride.  

In this example, we saw what is known as max pooling, where you take the max value in a 2 

cross 2 window. But you have other kinds of pooling operations to where you can take you can 

do what is known as average pooling, or L2 pooling. Average pooling is where you take the 

average of values in a given 2x2 window. L2 pooling is where you take the L2 norm of all the 

weights in a given 2x2 window, and so on.  

There are many more cousins of pooling, such as mixed pooling, which combines max and 

average pooling, that is spatial pyramid pooling, spectral pooling, so on and so forth. And we 

will visit some of these as we go forward to later lectures in this course.  

(Refer Slide Time: 23:19) 

 

In addition to these 3 operations, that is local receptive fields, weight sharing, and pooling. There 

are also variants that one can introduce in these layers that we discussed specifically, in the 

convolution layer of a convolution neural network. Let us see a few of these variants. Before we 

close this lecture. A popular variant is known as dilated convolution, where there is a new 

parameter introduced, known as dilation rate, which as the name says, controls the spacing 

between values in a kernel. So, when you apply a kernel on an input image, you change the 

spacing in how the values are applied, or convert the kernel with respect to the input.  
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So let us see an example here of a 3x3 kernel that is green in color, the blue is the input image 

with a dilation rate of 2. Let us see how it works. You can see now that when you convolve you 

are taking not you are not placing a 3x3 kernel directly on a 3x3 window of the input, produce 

spacing things out, and taking your placing the 3x3 kernel on that spaced out image.  

One could also say this is equivalent to subsampling your original image and then applying by a 

dilation rate and then applying the same standard convolution. Both of them turn out to be 

equivalent, but we are doing it in 1 step. Now, remember, we already said sampling and 

interpolation can be interpreted as conventional operations. We just taking advantage of that now 

using a dilated convolution. So, that is the animation of how dilated convolution looks.  

You can notice now, that when the dilation rate is 1, it becomes standard convolution. There is a 

subtle difference between dilated convolution and standard convolution with say stride 2 what is 

it? When you do standard convolution with saying stride 2, the convolution is still with the 

original neighbors neighboring pixels in the image, just that the next convolution goes 2 pixels 

further, but a dilated convolution, each convolution itself is dilated and sees a larger 

neighborhood in the input image.  

(Refer Slide Time: 25:54) 

 

Another popular variant of convolution that is used while training neural networks or CNNs is 

known as transpose convolution. As the name suggests, transpose convolution allows 

upsampling of an input. What do we mean? In traditional convolution, you have an input image, 
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you take a filter, and if you do not pad, you are going to get an output that is smaller in size. We 

are going to transpose that now.  

We are going to see if given an input image, and if you convolve can you get a bigger image 

without doing anything else? And that process is what is known as transpose convolution. It is 

sometimes also called deconvolution or convolution. Although it is not technically 

deconvolution, deconvolution means a different thing in a signal processing context, although 

certain articles call such an operation deconvolution.  

Traditionally, we would achieve upsampling using interpolation or similar rules. We saw this in 

the first week of lectures, that one could take something like a tenth kernel, and convolve that 

with an image to get a higher resolution image, or up to sample the image. We try to now ask, 

why should we use the tenth kernel? Why cannot we learn the weights of that interpolation 

kernel? Let us try to see how this transpose convolution is done using an example.  

So, you have an input. Let us see a 1D example just to keep things simple and be able to easily 

explain, let us consider a 1D example, which has a dimension of 4 (2, 3, 0, -1) are the values in 

this input. Let us consider the kernel to also be 1D, which is 1, 2, -1. Now we want to find out 

how do we get an input which is larger than the output, which is larger than the input, let us see 

how we do it.  

We take the 1, 2, -1, and convolve it with the first value of the input. And that gives you 2, 4, -2. 

Then we slide 1, 2, -1 to the second value of the input. And we now get 3, 6, -3. We further slide 

1, 2 -1 to the next location and input get 0, 0, 0. And finally, we get -1, -2, 1. Now in each of 

these locations, we add up the values that we get, as we convert this filter with each location of 

the input.  

So, your final output would look like 2, (4+3=)7, (-2+6+0=) 4, (-3-1=) -4, (0-2=) -2, and 1. This 

gives you the output which is now larger than the input. And you could do the same thing, even 

in 2 dimensions to make an image larger. We will see examples of where this is used a little later 

in this course.  
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Let us understand this with a visual illustration. See, you can see 2 examples here, 1 of 

upsampling, a 2x2 input to a 4x4 output, and another upsampling for 2x2 input to a 5x5 output. 

In these images. The blue image in the middle is the 2x2 input. And the green image is the 

output. The shaded regions show the filter and how they are applied. So, you can see here that 

you first apply the 3x3 filter on just 1 pixel of your input and that gives you one of the values in 

the output.  

Similarly, you move the filter on locations, and in this case, the last 2 values of the filter get 

multiplied by 2 locations. In the 2x2 input, and that gives you the value in the second location at 

the 4x4 output. In the 5x5 output scenario, you leave gaps in the 2x2 image. And so your values 

are going to be slightly different here. But you see this sliding over. And as you move that 3x3 

filter over different parts of the 2x2 image, you get different values for your, for each pixel in 

your output image. 
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There are other kinds of convolution that are also possible. Some of these are something that we 

will see in detail when we talk about their applications in different contexts. But let us briefly 

review them now. 3D convolution, as we already mentioned, is where you do 3D convolution, 

and you get the output also to be a 3D volume. In the scenario that we talked about in this 

lecture, we did have our filter to be 3D, but our output feature map was 2D, and we made it 3D 

by taking many filters or many feature maps.  

But what if we ensure that the output is a 3D volume, by the nature of convolution itself, that is 

3D convolution. We also will talk about a 1x1 convolution where you only convolve along with 

the depth of a volume and that becomes 1 single value in the output. So, an input of WxHxB 

becomes WxH, because you convolve the entire depth along 1 particular pixel with a depth 

kernel and you get one scalar in that particular location.  

You can also have grouped convolution where different filters convolve with different depths in 

your input. So, if you had about say 100 channels in your input, 1 set of filters could interact with 

the first 10 channels, then another with the next 10 channels, so on and so forth, that is grouped 

convolution.  
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We can also have separable convolution, the way we saw it in the first week, the way we could 

separate convolution in 2 dimensions as convolution along 1 dimension, followed by convolution 

along the second dimension. Recall that we said that this could help reduce computations, which 

is what we talked about here. So given an input, if you originally had a 3x3 kernel, to get us the 

3x3 output, you first have a column kernel, get an intermediate output, then have a row kernel 

and then you get your final output. This is just a visualization of separable convolutions that we 

saw earlier in this course.  

We could also have what is known as Depthwise Separable Convolution, were given an input 

volume, you have filters in 3 different channels for 3 different channels. And you can go through 

each of them individually to get 3 different feature maps. And then you run a depth convolution 

to compress all of them into a single feature map. Now, this can be repeated for different filters 

to get multiple filters to feature maps in this next layer.  
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We can also look at what is known as flattened convolutions which are very similar to separable 

convolutions where you first have a filter which is along 1 of the dimensions, then have a filter 

which is along another dimension, and then have a third filter along a third dimension. In some 

sense, this is a combination of separable convolution and depthwise convolution, this is just the 

general paradigm for that.  

And finally, we can also have spatial and cross-channel convolutions where we can do 

convolutions in parallel and then concatenate them to get an output. We will see examples of 

several of these types of convolutions in later lectures this week, in the context of how they are 

used.  
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In conclusion of this lecture, here are your recommended readings. For an interactive illustration 

of convolution, please see this link. For a very nice discussion of the deconvolution operation, 

please see this link at distill.com. Other good resources are chapter 9 of the deep learning book 

and certain notes are the CS231n course. A couple of questions for you to take away given a 

32x32x3, image and 6 filters of size 5x5x3. What is the dimension of the output with a stride of 1 

and a padding of 0?  

Work it up. Another question here is, is the max-pooling layer differentiable? How do you 

backpropagate across it? Think about these questions at the end of this lecture.  

`
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And here are some references. 
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