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Lecture 23
Feedforward Neural Networks and Backpropagation - Part 1

Our next lecture will be on continuing the discussion on multilayer perceptrons and knowing

how we can train them. So for perceptrons, we talked about the perceptron learning algorithm.

Then for multilayer perceptrons how do you train them with the same method work is what we

will try to find out now.

(Refer Slide Time: 00:45)

Multilayer perceptrons are also known as feedforward neural networks because the information

is fed forward from the input all the way to the layers to be output. And all neurons are organized

in layers. While we saw examples of multilayer perceptrons with one hidden layer in the

previous lecture you could have as many hidden layers as you need between the input layer and

the output layer. Obviously, at the end of the day a neural network, a feedforward neural network

or a multilayer perceptron is approximating a function that takes you from input to output.

So whatever function you are approximating can be better approximated perhaps if you have

more hidden layers if that function is complex, this is not a necessity but having more hidden
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layers could help you. We will see later how adding too many layers can also cause problems but

at this point let us move forward with this discussion of training a feedforward neural network.

So, as I just mentioned a neural network is typically used to approximate some function . is𝑓* 𝑓*

the ideal function that in machine learning given an input can assign the correct label so that

particular input, so could just be a classifier also and to the neural network we try to𝑓*

approximate this function .𝑓*

The neurons are arranged in the form of a directed acyclic graph, directed because of these edges

from one layer to the next layer are directed edges you cannot information does not flow the

other way, although for training you use them we will see that in a moment but when you

propagate information you will propagate them only in the forward direction that is the directed

nature of this graph.

And it is acyclic because there are no cycles in this particular graph. The information flows only

in one direction from the input all the way to the output and that is why they are also known as

feedforward networks.

(Refer Slide Time: 03:20)

The number of layers in the neural network is typically known as depth; each neuron can be seen

as a vector to scalar function and which takes a better of inputs from the previous layer and
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computes a scalar value. Remember, even a single perceptron is a vector scalar function because

it has n different dimensions of x as input and gives us one output each neuron is similar to a

perceptron in the assets.

And when you have multiple layers stacked one after the other in a neural network you could

look at the entire network as a composition of several functions, each layer is a certain function

which shakes you.

So let us assume that you have layer 1 which is denoted by function , this function takes you𝑓
1

from this is what the function does. Similarly, function is a function that goes𝑅
𝑑

𝑖 → 𝑅
ℎ

1 𝑓
1

𝑓
2

𝑅
ℎ

1 → 𝑅
ℎ

2

Similarly, goes from . So each layer is a function by itself and the overall neural𝑓
3

𝑅
ℎ

2 → 𝑅
𝑑

𝑜

network can be envisioned as a composition of functions that achieves the purpose you are

looking for.

(Refer Slide Time: 05:21)

So in machine learning we all know that we are given training data to train an algorithm and if

you consider the supervised learning settings, then you have data as well as labels provided to

you in your training data.
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Now to approximate some function , we are generally given noisy estimates of at different𝑓* 𝑓*

points in the form of a data set, , is the vector that could have certain dimension, is(𝑥
𝑖
,  𝑦

𝑖
) 𝑥

𝑖
𝑦

𝑖

the output label corresponding to that particular input data point and there are a total of m such𝑥
𝑖

examples in your data set, you could assume that these examples in your training data set are

instances of the overall function that takes you from x to y.𝑓*

So our neural network defines a function y which is , x is the input, by , we are going to𝑓(𝑥,  θ) θ

refer to all the weights and biases that we have in the neural network. We are going to henceforth

call the weights and biases of the neural network. These are the other values thatθ θ

parameterize the neural network that is what defines the function output that you are going to get

when you propagate a value through our neural network.

Our goal is to somehow find a way that can best approximate , once again let me clarify𝑓 𝑓*

what is. is a hypothetical function which takes you from input to networks, so each of your𝑓* 𝑓*

training data points are instances of that function and our goal now is and we do not know what

actually is in machine learning typically.𝑓*

If you knew , you actually do not need machine learning. When new data points come in you𝑓*

simply apply on it and you will get the label that you need. In machine learning we are only𝑓*

given those noisy instances of but we do not know what is and that is what defines the field𝑓* 𝑓*

of machine learning itself.

And our goal is to use the neural network to best approximate . Now the question that we have𝑓*

is how do you find the values of the parameter , the weights and biases to train this network? Soθ

you are given a training data set, let us assume you are given a neural network of a certain

architecture, you are given say two hidden layers, the first hidden layer has 10 neurons, the

second hidden layer has 100 neurons whatever that be that is user defined.

That is given to you and the training data set has given to you your goal is to find what should be

your weights of the neural network which will do well on the training data. So that is the process

of training neural networks and to do that we introduce a very well-known method optimization
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known as Gradient Descent. A gradient descent is very simple but a very well-studied method in

optimization which is used to minimize objective functions in general. And that is what we are

going to use to train feedforward neural networks.
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(Refer Slide Time: 09:06)

Let us take a simple example and then take it forward neural networks. Neural networks are

usually trained by minimizing a loss function such as mean squared error. The neural network

when you give an input to a neural network it uses a certain output. What is that output? 𝑓(𝑥; θ)

Once again if you take the patient example if you gave a set of patient attributes to a neural

network assuming that you initialize this to some random values, some random values to startθ

the neural network with.

If you now pass one patient’s information such as blood group A is well person smokes or not so

and so forth, all of that information lets us say you passed it to a neural network you get a certain

output on the output label based on the weights that you have initialized. That value that you get

is defined by but in your training data you already know what x should give you because𝑓(𝑥; θ)

that is why it is called training data.

You have the correct labels given to you so you have at least define for that particular𝑓*(𝑥)

value of x you may not know what is at other places but you know what is at that particular𝑓* 𝑓*

location. I knew some of this error up over all your input data points m is the total number of

data points and your average error across all of your data points.

This is typically known as the mean squared error is the mean of the square errors for all your

training data samples. Let us take a simple one day example and then try to study this subject
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further. Let us say we like to minimize the function specifically let us assume that𝑓(𝑥) =  𝑥2

we know the value which gives you the smallest value for .𝑓* 𝑓(𝑥)

Let us assume that . Of course, we know that , gives you the𝑓*(𝑥) 𝑥* = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥
 𝑓(𝑥) 𝑎𝑟𝑔𝑚𝑖𝑛

𝑥

minimum value of across all the possible values which you can choose for x. is𝑓(𝑥) 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥

the value of x that gives you the minimum . That is the difference between and𝑓(𝑥) 𝑚𝑖𝑛 𝑎𝑟𝑔𝑚𝑖𝑛

So is that x that gives you the minimum value of . So to summarize this slide so you have𝑥* 𝑓(𝑥)

mean squared error which we typically use to train neural networks but before we deal with that

mean squared error loss let us just consider any function which we want to minimize, let us𝑓(𝑥)

try to see for the 1D case.

(Refer Slide Time: 12:14)
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So what gradient descent suggests to us is that given the function we can obtain the slope of𝑓(𝑥)

the function at x by taking its derivative, let denote that slope of f at x. Now if you𝑓(𝑥) 𝑓'(𝑥)

give a very small push to x in the direction of the slope the function will increase, what we mean

is you have x, you have which means we take the sign of the gradient and𝑝. 𝑠𝑖𝑔𝑛(𝑓'(𝑥))

whatever the direction be, in that direction you take a small step forward.𝑝

So that is going to give you a function value which will be greater than . You could now ask𝑓(𝑥)

me the question: what if the sign itself was negative but of𝑓(𝑥 + 𝑝 .  𝑠𝑖𝑔𝑛(𝑓'(𝑥))) >  𝑓(𝑥)

course yes, because that is how the gradient is defined. So if your sign is negative the reverse is

also true which means if you take one step in the negative direction of the gradient your function

value will become lesser than the function value that you had at x.

That should give us a clue which means if I take the gradient at a particular point x and I go one

step in the negative direction of the gradient I am going to find another point x where the

function value will be lower which means if I keep repeating this over and over and over again I

will finally reach a point where the function value is released. This is the basic idea of gradient

descent. We start off at a random x and keep taking small steps in the direction of the negative

gradient and we iteratively reach a point at which is optimum.𝑓(𝑥)
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(Refer Slide Time: 14:31)

Here is an illustration of what we just spoke about. Let us assume that f was indeed a convex

function that is your f and the minimum is attained at x is equal to 0. Since the minimum is

attained here we all know that which means that particular point is a critical point which means

at that particular point.𝑓' =  0

So let us consider a certain x, say its minus 1 which is this particular point, we can see that at that

particular point the gradient is going to be negative. If the gradient is negative we take one step

in the direction of the negative gradient which means we grow one step towards the positive side

or rightward and you will take one step in the rightward direction which will definitely take you

to a function value which is lowered.

On the other hand if your current x was here at 1 let us say at this particular point your gradient

is, your gradient of the tangent is positive, you are still going to take a step in the negative direct

on the gradient which means you will go left when you increment this algorithm which again

will take you to a point which is where the function value is lesser.

As you can see it is a fairly simple method but given a function this is a simple method that can

help you reach the minimum of that function and find the x at which you can reach that min.

How is this connected to neural networks? Will come to that in a moment.
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(Refer Slide Time: 16:12)

Let us consider now a slightly more complex sitting, a multivariate setting as shown in the

previous slides we consider which is univariate. Let us consider a multivariate setting𝑓(𝑥)

where while training neural networks the loss function we minimize is parameterized by many

weights of the neural network. Let us subsume all of them into a quantity known as or theθ

weights and the biases.

You have to subsume into one quantity known as . Let us now denote this loss function as L ofθ

theta and our aim is to find the weight vector theta which minimizes , very similar to what𝐿(θ)

we saw on the earlier slide.
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(Refer Slide Time: 16:56)

Now, let u be a unit vector which is the direction that takes us to the minimum of this loss

function, rather we are saying now that we have the gradient and we know that some∇
θ
𝐿(θ)

component of the gradient may help us go to the minimum of this loss function that we want to

minimize.

Mean squared error was one such loss function there could be at this point we are saying that

mean squared error may not be the only loss function for a neural network there could be other

loss functions that you minimize the primary test with respect to let us just call that at the𝐿(θ)

gradient be ∇
θ
𝐿(θ)

And let u be the vector which is concurrent to the gradient that will take you to the minimum and

for simplicity you are going to assume that u is a unit vector. So we want to minimize over all

possible unit vectors 𝑚𝑖𝑛
𝑢𝑇𝑢=1

𝑢𝑇∇
θ
𝐿(θ)
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(Refer Slide Time: 18:03)

Now this can be written as min be simple this is simply a dot product, so it can be written as

where is the angle between the u vector and the gradient vector,||𝑢||
2
||∇

θ
𝐿(θ)||

2
𝑐𝑜𝑠 β β

gradient of the loss with respect to theta by 2. Clearly we know the 2-norm is a positive product,

this quantity here is a positive quantity. It is number to a norm in standard definition is simply

square root of L1 theta square plus L2 theta square so on and so forth depending on how many

components it has whatever components it has.

This is your standard true norm definition and that quantity 2-norm is positive a non-negative

quantity. So which means we ideally want to minimize this dot product because u is a unit vector,

the only way we can minimize this quantity is to make . You remember 2-norm𝑐𝑜𝑠 β =  − 1

of u, the value is 1 because u is a unit vector, we already know that.

So the only way to minimize this entire quantity is to make a to be as low as possible and𝑐𝑜𝑠 β

the least value of the is minus 1 which means since u is 1, u has to be the direction of the𝑐𝑜𝑠 β

negative gradient. So that is the vector that will actually minimize this particular quantity.

Remember for to be 180 degrees u has to be because is simply the angle between u and theβ β

gradient.

u simply has to be in the opposite direction of the gradient which will minimize this quantity

rather if we want to use the gradient in some way to reach the minimum of the function of a
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function we have to go the opposite direction of the gradient to reach that minimum. Keep in

mind that this is the gradient descent algorithm. Keep in mind that it has a complement known as

gradient ascent where if you go in the positive direction of the gradient you will reach a

maximum. That algorithm also exists but in this context we are interested in minimizing a loss

function and hence we are going to focus on gradient descent.

(Refer Slide Time: 20:34)

Let us now try to see how you actually use gradient descent in practice to train neural networks

or train any other function for that matter. For neural networks in particular we start with a

random weight vector , we compute the loss function over the data set which you have aθ

training data set, you take a with the current network using a loss, suitable loss function𝐿(θ)

such as mean squared error.

You could have other loss functions and we will see many of them over this course but at this

point let us take one of the simplest which is the mean squared error. We compute the gradient of

the loss function with respect to each parameter in the network, it could be the way, it could be

the bias, could be any other parameter.

Every parameter that is important in getting the output of the neural network you compute the

gradient of the loss function every parameter that you need to learn ofcourse. You compute the

gradient of the loss function with respect to each of those weight values and we denote that as
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right. So now based on gradient descent which is an iterative procedure you define this∂𝐿/∂θ

actual step to be given your  which is one of your weights current value.

You take which is the gradient of the partial derivative of the loss with respect to that∂𝐿/∂θ

particular parameter , if there are many weights and biases on the neural network you have toθ𝑖

compute the derivative of the loss function with respect to every weight or every bias neural

network. And where is simply known as the learning rateθ
𝑖
𝑛𝑒𝑥𝑡 = θ

𝑖
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 −  η∂𝐿/∂θ

𝑖
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 η

or a step size.

It tells us how large a step you want to take the direction we will talk about ways in which this

can be chosen a little later. I am repeating this process until the gradient is 0, why? Because when

the gradient is 0 we have reached a critical point which is perhaps the minimum of that function.

(Refer Slide Time: 22:45)

Let us look at a neural network again as we just said sometime ago a feedforward neural network

is a composition of multiple functions organized as layers. Now how do we implement gradient

descent in this kind of neural network? We know we have to compute the gradient of the loss

function. Let us assume the loss function is given to us, let us assume it is mean squared error.

We have to compute the gradient of the loss function with respect to every weight in the neural

network. How do we do this?
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(Refer Slide Time: 23:17)

We do this by taking advantage of the chain rule in calculus. Computing gradients with respect to

any weight in a layer requires the computation of the gradient with respect to outputs which𝑖

involve the weight in every layer from that layer to the output.

So for example if you had a certain weight here remember the loss function is defined at this𝑤
𝑖

particular point loss of let us say where is nothing but a set with all the weights and biases.θ θ

So we want to find where is one of the weights in the neural network.∂𝐿(θ)/∂𝑤
𝑖

𝑖

So to do that remember we need to apply chain rule which means we have to now find out

by computing partial derivatives of all the steps in which equal to which∂𝐿/∂θ 𝑤
𝑖

𝑤
𝑖

contributed across all of the weights, for example probably contributes to every value because𝑤
𝑖

this neuron contributes to every other neuron in that next layer and so on so forth. So we now

have to sum all of those contributions and then find the gradient of the loss function with respect

to this . That is the overall intuition but let us say let us see how we actually do it as an𝑤
𝑖

algorithm.
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