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We said that although Rosenblatt proposed the perceptron. Minsky and Papert later showed             

that the perceptron is limited to only a certain kind of data configurations and does not work                 

for data configurations beyond those times and the examples they used was the XOR gate.               

Let us try to understand that we know with the graph truth of the XOR gate the truth table for                    
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the XOR gate is given by something like this whereas one of the inputs is 1 you get a 1                    

otherwise a 0. 

So from a perceptron perspective what we would want is in the first scenario we would want                 

a to be less than 0 because we want the output to be 0. Similarly, these two cases we xwi i                    

would want it to be greater than or equal to 0 and in the last case we wanted to be less than 0                       

again. So, let us analyze this let us take the first equation which says plus into 0              w0   w1    

which comes here plus  into 0 which comes from here.w2   

We ideally wanted to be less than 0 which is what we want the perceptron to do which means                   

has to be less than 0. Similarly, from the second table a line of the truth table you havew0                     

which are the inputs in the second line. We want that to be greater than or.1 .0w0 + w1 + w2                  

equal to 0 which means is greater than minus . So since is less than 0 would     w1      w0    w0      w1   

be a positive quantity greater than the absolute value of .w0  

Similarly, the third line of the truth table would similarly get you to be greater than            w2      

negative and the final line would show that should be less than 0 or w0         w0 + w1 + w2        

must be less than . It is quite clear here that because and will bew1 + w2     − w0         w1   w2    

positive cannot be less than because we know that individually each of them w1 + w2      − w0          

are greater than  which itself is a negative number.− w0  

by itself is a negative number, so will be a positive number. So we can see aw0         − w0            

contradiction in these criteria here and that should clearly show you what the perceptron              

cannot solve the XOR problem. Also visually speaking you have the XOR problem to be               

represented as you want these two elements which are 0, 1 and 1, 0 to have labeled to be 1                    

and you have these two elements 0, 0 and 1, 1 to have labeled it to be 0. 

And as we said a perceptron simply embodies a line and you should draw a line here you are                   

going to get this element wrong and if you draw a line here you are not going to get this                    

element wrong and with XOR gate cannot be solved by the linear model. So, as you can see it                   

is impossible to draw a line which separates the red points from the blue points here. 
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And that leaves us to the concept of multi layered perceptron or the multi layer perceptron as                 

the figure shows. It is not restricted unlike perceptron to only input layer and an output layer                 

and also has the convenience of including a hidden layer of neurons. The number of neurons                

in this hidden layer is a designed decision.  

(Refer Slide Time: 04:21) 

 

So here is an example of how multi layer perceptron can be used to solve the XOR problem.                  

This is just one way configuration that can solve the XOR problem. There could be other big                 

configurations that may solve or may not solve the XOR problem. All that we are trying to                 
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say here is that there is at least one way configuration with a multi layer perceptron that can                  

solve the XOR problem. 

Let us look at this example so you have the weights denoted on each of these connecting                 

edges here and you also have the y is given to be minus 1. So with these values given to us let                      

us take a couple of cases from the truth table and welcome that this indeed gives a solution.                  

So if you have 0, 0 as a input you are going to get 0 into 2 plus 0 into minus 1 plus minus 1                         

z1 we get a input minus 1. 

So it is a perceptron and its input is negative input given output to be 0 you would get exactly                    

the same output for z2 you will get minus 1 and its output to be 0 which means you are going                     

to have what y gets as 0 which we can assume that only values greater than 0 is a threshold to                     

0 and only values greater than 0 gives you 1 is input and you would get and because the                   

output at y is 0 you would now get the output to be 0.  

Let us take the second case now and see how this works out for this particular scenario. So,                  

let us consider the input now to be 0 and 1 so if that be the case you know z1 is going to get a                         

0 and a minus 1 and a minus 1 which would turn out to be minus 2 which means the output                     

would be 0 and unless z2 you would get z2 would get a 0 and z2 and a minus 1 which should                      

be 1 which means the output of z2 will be 1. 

Which means you are going to get an output of 2 here plus 2 into 1 plus 2 into 0 which                     

corresponds to a 1. You could hold a similar thing would hold for the third row third tuple 1,                   

0 let us rather work out the last one now just to be sure about this again. So let us consider 1,                      

1 when we have 1, 1 you are going to have 2, minus 1 minus 1 which is 0 which means 0. 

Similarly, you have a 2, minus 1, minus 1 coming from bias as 0, 0, 0 and a 0. We can put                      

this out if this was fast you will notice that this is a valid solution for the XOR problem.  
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You can in fact show that any Boolean function of n inputs can be represented exactly by a                  

network of perceptrons containing one hidden layer with perceptrons and one output layer        2n       

containing one perceptron. So, if you have a hidden layer rather a multi layer perceptron and                

you have perceptrons in that hidden layer you can represent any Boolean function of n  2n               

inputs. How do you prove this?  

We are not going to formally prove it, but informally it is fairly simple because every case                 

that you have can be represented as neuron in your hidden layer. Remember, if you have n                 

inputs assuming we are talking about Boolean functions there are combinations and you          2n     

can ensure that the right perceptron clicks for each of those combination. 

So you can come with a great configuration that ensures that each of those perceptrons in              2n    

the middle layer corresponds to one combination of n inputs which automatically will give              

you your solution fairly straight forward to see it informally a test, but one thing to keep in                  

mind here is while we say that any Boolean function can be implemented by hidden layer                

with perceptrons, this is sufficient, but not necessary which means you could solve a 2n               

problem with less than  neurons too.2n  

For example we just now solve XOR problem which we solved with a hidden layer with just                 

two hidden neurons according to what we said in the next slide we should have needed                

neurons, but that is not the case and that is the reason why we say that a network of 222 = 4                      

518



power n plus 1 plus 1 for the bias is not necessary, but it is sufficient. You can probably find                    

solutions with even less. 

But you can definitely find a solution with neurons or perceptrons in a way. Why does        2n          

this necessary insufficiency matter? The reason is as n increases the number perceptrons in              

the hidden layers increases exponentially . So, your multi layer perceptron can become too     2n          

computationally intensive to train or even just to take a formal pass through. So you do not                 

want that always to be computationally intensive.  

You ideally want to find the multilayer perceptron solution that has the least number of               

neurons in your hidden layer. 

(Refer Slide Time: 10:00) 

 

So just ask the question what do we do if you want to go beyond binary inputs and outputs?                   

We only spoke about Boolean inputs, we did say that perceptron could handle the inputs               

beyond binary, but are there any relationship with the understanding with the previous result              

that we showed was only that a multi layer perceptron with hidden neurons can solve           2n      

taking Boolean function.  

What if that function was not Boolean can be used the same perceptron in order to represent                 

such functions.  
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The answer is we need something called activation functions. Why activation functions we             

will see that in a moment. So far we noticed that a perceptron only fires when the weighted                  

sum of its inputs is greater than threshold minus w0 or which was theta. So this thresholding                 

logic can become very harsh at times. For example if your minus w0 was 0.5 even 0.49 and                  

0.51 which are very close to each will end up giving very different results because one of                 

them is below the threshold. 

And one of them is about the threshold which means your thresholding function is a step                

function where you have a sudden change in your output even with a very small change in                 

your input. Typically, this behavior does not occur in the real world, but even in this case the                  

behavior is not a characteristic of the problem. It is about the characteristics of using a step                 

function as a thresholding function. 

And we all know that in the real world you generally expect a smoother decision function                

such as the one shown on red here as you go one value to another value, you do not wanted to                     

jump up, you do not want the output as the perceptron to be one suddenly when the value                  

goes from 0.49 to 0.5 or 0.499 to 0.5. How do we handle this? 
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The way we handle this is to introduce what are known as activation functions which aim to                 

replace the threshold function that you have with more smoother functions and one early              

example which was used for several decades is known as the sigmoid activation function and               

the perceptron or a neuron that uses a sigmoid activation function is known as a sigmoid                

neuron. 

You ideally produce any logistic function which has a shape such as this to obtain a smoother                 

output function than a step function. So one that we are particularly going to talk about here                 

is the sigmoid logistic function which is given input wx which can be expanded this way. The                 

sigmoid function computes 1 by 1 plus e power minus that input that is your sigmoid function                 

which in a graph form has this particular shape.  

Clearly here you no more have a sharp transition at a threshold, but smooth transition that                

goes as your input keeps changing. Also your output now is no longer just binary it is not just                   

0 or 1, but your output now can be any value lying between 0 and 1 which could potentially                   

be interpreted as a probability of the output. So which means if you used a sigmoid activation                 

function on the neuron in your output layer. 

It would give you a value between 0 and 1 which can associate a probability with whether a                  

point belongs to the positive class or a negative class. So, if your output was 0.5 you perhaps                  

0.5 let us take another example let us say 0.6 you would say that assuming your input as                  
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patient records you would say this patient has 60 percent risk of say suffering from cancer or                 

heart attack or whatever the problem you are modelling in this particular scenario. 

More importantly unlike the step function this function is smooth, it is continuous at minus               

w0 which is your threshold it is continuous there as long as continuities and is also                

differentiable. Why is this important? We will see very soon it being differentiable it is               

extremely important for how we are going to train these kind of networks.  

(Refer Slide Time: 15:13) 

 

There are other popular activation functions we will brief you little bit here, but we will cover                 

in detail in a later lecture this week, but a sigmoid activation function we just said is given by                   

assuming your input as and h as . There is also an activation function    z = 1
1+e−z    h = e +ex −x

e −ex −x
       

called the rectified linear unit which if you see here is the blue line which is the blue line on                    

this particular graph which is given by if your input is z the output is max(0, z).  

So if your input is negative it would give you 0. If your input is positive it give you value                    

itself that is the very popular activation function. There is also a variant of the ReLU                

activation function called the leaky ReLU which does not make this 0, but keeps this a very                 

small value and we will see each of these being designed for each of these a little later this                   

week.  
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A more general variant of the ReLU activation function is known as the exponential linear               

unit or ReLU which is simply a smooth form of w or leaky ReLU activation function which                 

is given by alpha into e power z minus 1, z max was there where alpha is the number greater                    

than 0 and you can see the ReLU activation function in the total color on this particular                 

graph.  

We will see these activation functions a bit later in detail, but all that we are trying to tell here                    

is the activation function is important for us to understand how well multi layer perceptrons               

can model non binary data, non boolean data. 

(Refer Slide Time: 17:12) 

 

And that is where the representation power or study of the representation power of multi               

layer perceptions MLPs stands for multi layer perceptrons comes in. A very well studied very               

well sighted theorem is known as the universal approximation theorem which states that a              

multi layer network of sigmoid neurons with a single hidden layer can be used approximate               

any continuous function to any desired precision.  

This is a fairly strong statement we are saying that if you give any continuous function we                 

can use a simple multi layer perceptron sigmoid neurons and one hidden layer to approximate               

that continuous function. We are not going to formally prove it here if you are interested                

these papers sighted here are good pointers to the proof. There is also a very nice visual                 

explanation of the universal approximation theorem in chapter 4 of Michael Nielson online             

book on Neural Networks. 
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So your homework for this lecture is try to solve XOR using a multi layer perceptron with                 

four hidden unit come out with your own weights and solve XOR using a multi layer                

perceptron with 4 hidden units. This should also help you understand the theorem that we               

spoke about how any Boolean function can be represented by a multi layer perception with 2                

power n hidden unit this should also help you get an intuition of that.  

For further reading please also feel free to refer Mitesh Khapra original lecture slides which               

are on the website linked here. There are other good resources Deep Learning book which is                

publically available on website called Deep Learning Book.org is a general resource that we              

may point to various parts of this course. Chapter 6 is a good introduction to multi layer                 

perceptron.  

There is also the Stanford CS231n course which is also a good course whose notes are                

available here. There is also the Stanford UFLDL tutorial and a very nice introduction to               

neural networks by Raul Rojas. 
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There are some references and we will stop here for now.  

525


