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(Refer Slide Time: 0:15)

Moving on from the previous lecture, we will now talk about how you describe entire

images. So far, we spoke about how to obtain descriptors for certain key points in images,

which could be in several multiples in each image, how do you aggregate these

descriptors to obtain a single descriptor for an image and why do we need this.

We talked about image panorama stitching, where you try to match key points. You may

now want to match images themselves. For example, in image search or retrieval or even

to perform image classification as we will see when we go through these slides. In this

lecture, we will focus on two specific kinds of descriptors, the bag-of-words descriptor

and another extension of it known as the VLAD descriptor.
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(Refer Slide Time: 01:15)

Once again, the lecture slides are based on Professor Yannis lectures at Inria Rennes.

(Refer Slide Time: 01:21)

So we have spoken so far about obtaining key points from two different views of the

same scene or object. You have two different views. You extract key points in both of

these views. You get descriptors of key points in both of these views and you match them

and perhaps try to match the geometry of the configuration between them using methods

such as RANSAC or Hough transform, so on and so forth.
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(Refer Slide Time: 01:54)

But the question that we are asking here is what if we want to match different instances of

an object. The object is no more the same. In the earlier slide, it was the same object from

different viewpoints. Now the object could be completely different. In this case, it is a

helicopter, but two completely different helicopters. They are not the same object itself.

Then how do you match or how do you search? For example, imagine your Google image

search where you are going to search for helicopter kind of images. So you post an image

and ask the system to retrieve similar images for you. How do you do this is what we are

going to talk about now.
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(Refer Slide Time: 02:37)

The main observation here is that rigid transformations may not work here. So far, if you

only wanted to match two different objects or scenes taken from different perspectives,

you could consider one to be a rigid transformation of the other. You could try to estimate

your affine parameters, your rotation parameters or your translation parameters, but then

these are completely two different instances of an object. It may not be a rigid

transformation at all.

So, ideally what we want to do is now to see if we can completely discard geometry

itself, because it is no longer going to be a rigid transformation. Can we completely

discard the idea of geometry? Try to match images in some other way beyond geometry.

And then maybe later using other methods, we will try to bring back certain elements of

geometry, little loosely into the mix.
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(Refer Slide Time: 03:35)

So our first attempt towards getting image level descriptors is a method known as

bag-of-words, an old method has been used a lot in text before, but let us try to see how

we use this in images. So we are going to start with a set of samples, a set of data points.

Then you form a vocabulary of those data points. What do we mean by vocabulary, a set

of common words that exist across images. And finally, based on the vocabulary, we are

going to get a histogram, which is simply a frequency count of words in a certain

document. In our case, visual words in a certain image. Let us try to describe that in more

detail.

So if you had text information, your samples would simply be different sentences. Your

vocabulary would be the words that occur in these sentences, all the possible words that

you have occurring in your sentences. And finally, for each of these sentences, you would

come up with a histogram of how many occurrences of a particular word in your

vocabulary happened in this particular sentence. So, for each of your sentences, you can

look up a vocabulary or a dictionary and try to see how many times each word in the

vocabulary or dictionary occurred in this particular sentence.

Let us try to draw a parallel to images now. Let us say you have three different images in

this particular case. So you form a vocabulary. So what does a vocabulary mean for

images in text? It is perhaps simple. It is all the words that occur in your documents. But
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if you had images, what would be your vocabulary? So the way we are going to define

vocabulary is very simple again. You take different parts of each of these images, group

them together and see which of them correspond to something common. For example, it

could be possible that there are six kinds of visual words that occur in the first image,

which all look similar. Maybe they may look similar in color, in texture or in any other

appearance of the representation you choose.

Similarly, the second image has a set of visual words. And the third image has a set of

visual words. Once again, we define visual words as extracting several parts from an

image. So if you have a set of images, you extract parts from all of those images and then

try to pool them in some way and then group them and say these parts in the image have

to, seem to have similar properties and I am going to group them into one particular

word. We will see this a little bit more clearly over the next few slides. And once you get

these visual words, similar to text, you have a histogram of how many times each of these

visual words occurred in a given image. That histogram is what is drawn here for each of

these three images.

(Refer Slide Time: 06:56)

Let us see a more real world example to understand this a bit better. Before we go there,

what could be used for bag-of-words? It could be used for image retrieval as well as
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image classification as we just work. Why, because this is a way to represent an entire

image as a single vector. Let us see this using a more tangible example.

(Refer Slide Time: 07:17)

Here is an example of an image. And let us assume that this is the query image. And here

is an image from a dataset. So you could imagine that the dataset images are your entire

repository of images that you have. And the query image is like Google image search,

where you put up this image and you are asking for a search engine to retrieve all images

similar to this image. For example, you could upload a cat image on any search engine

and ask the search engine to retrieve similar cat images, a very similar example here.

Let us assume that there is a 15th image in your dataset image, which has an occurrence

of the similar structure. Now let us see what would happen earlier and how we would

change things now.
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(Refer Slide Time: 08:08)

Earlier, we would take key points in each of these images, descriptors around these key

points in each of these images and try to do a pairwise matching between the descriptors

in both of these images. And this is obviously a time taking process, because if you had

many key points, many descriptors in each image, you would ideally have to do a

pairwise matching between every number in the first image versus every number in the

reference image. This can get computationally expensive.

(Refer Slide Time: 08:43)
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If you had another image, you would have to repeat the same process for as many times

between the query image and the second reference image and so on and so forth for all

reference images.

(Refer Slide Time: 08:55)

So how do we want to resolve this problem? So what we are going to say now is that if

there were descriptors that were similar that would match between the two images,

instead of matching them pairwise between the query image and the reference image, let

us try to assume that similar descriptors will anyway correspond to similar

representations in that representation space in a certain metric, let us say the Euclidean

metric.

So a group of visual words or regions that are similar to each other would probably have

similar representations and they all grouped together in the representation space.

Similarly, for those regions marked with blue and the regions marked with red. They are

similar and they would probably match in the representation space. How do we use this?
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(Refer Slide Time: 09:46)

(Refer Slide Time: 09: 52)

So what we would do now is to come up with a representation, a common representation

for all similar descriptors, how would we do that? We could simply take your entire

repository of images or training images, take visual words from them, which are common

to each other and simply obtain their mean in that space. That becomes the visual word

corresponding to all of those visual words in the repository of images or training images.

So you would do this process offline before the retrieval process starts. So you could
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construct your visual words offline and keep them stored and ready when your search

process actually begins. So these visual words are already stored.

Given a query image, you take the descriptors corresponding to the key points in your

query image and now you simply match them with the visual word, which represents the

mean of similar visual words in your reference images. You do not need to do pairwise

matching with every descriptor in your reference word anymore. You would have a set of

visual words that are common across your repository of images. You only need to match

with them now to be able to get your answer. This makes this process very feasible to do

as well as very effective. There is no pairwise matching required and your visual words

now act as a proxy for your descriptors in your repository.

(Refer Slide Time: 11:20)

Now let us see this in a more well defined way. So let us imagine that your image now is

represented by a vector z belonging to , where k is the size of the codebook or the𝑅𝑘

number of visual words that you choose, which would be a parameter that the user would

set for a particular dataset. Each element of z, which is is represented as , where𝑧
𝑖

𝑤
𝑖
𝑛

𝑖
𝑤

𝑖

is a fixed weight per visual word. You can assign a weight. If you do not have a weight,

they could just have uniform weights. And is the number of occurrences of that𝑛
𝑖
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particular word in this query image. I will repeat that. So is a weight per visual word,𝑤
𝑖

which is optional. And is the number of occurrences of that word in this image.𝑛
𝑖

So given a set of n images in your repository in your reference images, which are

represented by a Z in , remember there are going to be K visual words, and n such𝑅𝑘×𝑛

images. For each image, you would have a k dimensional vector. So, and then n such

images becomes .𝑘 × 𝑛

And for a query image, you would simply compare the similarities between your query

images vector representation, which is going to count the number of visual words in the

query image and the number of visual words in each of the reference images. You simply

take a dot product or cosine distance between these two and you get a set of scores. You

sort order your scores in descending order and that gives you the best match followed by

the next best match so on and so forth.

Note here that when we take a cosine distance based on say dot product, remember here

what we are doing as a dot product in , you would take every column of Z, which𝑍𝑇𝑞

corresponds to one specific image, and you are taking an individual dot product of that

reference image with this query image q, the second reference image with the query

image q, so on and so forth. And whichever has the highest dot product that image is

what you would recommend as the closest match to your query image.

Just to point out to you a more general observation that if you take a dot product, it is

similar to measuring Euclidean distance, the similarity that you measure using a dot

product or a cosine distance, cosine similarity is complementary to the use of Euclidean

distance. Why, because now can also be written as . Work it|| 𝑧 −  𝑞 ||2 2(1 −  𝑧𝑇𝑞)

out as homework. So, which means something closer as cosine similarity will have a low

Euclidean distance. A high cosine similarity will be a low Euclidean distance. So, in

some sense, these two matrices comparing similarities or distances are complimentary.

An important observation here is when , where p is the number of features per𝑘 >>  𝑝

image on average. Remember k is the number of visual words that you have in your
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codebook, which would be user defined and p is the average number of features that we

have in a given image. We saw with examples like SIFT that could be several hundreds.

If , then z and q are going to be sparse. Why, if you have 1,000 visual words and𝑘 >>  𝑝

say 100 in each image, then obviously there are going to be quite a few, at least 900 in a

given image that will have zero count, because those visual words do not exist in this

image. Remember k is the number of visual words and p is the number of features in a

given image. So, if , both z and q are going to be sparse.𝑘 >>  𝑝

So to make the computation more effective here, rather than check whether a word is in a

given image, which is what you would typically do, you check for every word in a given

image, but then the entire image could be a very sparse representation of the possible set

of words. We can inward this problem and check which images contain a particular word

and we will see now that this can be a more effective way to compute similarity in this

scenario. Let us see this a bit more intuitively.

(Refer Slide Time: 16:11)

So let us imagine now that you have a query image, which has visual words, 54, 67 and

72, these are your visual words, remember you have a bunch of visual words and every

image has a certain number of occurrences of each of these visual words. Let us assume

now that you have just one occurrence of visual words, 54, 67 and 72 in a given query
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image. 54, 67 and 72 are just random numbers. You could have taken any other numbers.

This is just to explain.

Now, if you have a repository of images that you want to retrieve from, let us say they are

given by a set of numbers in your dataset. So you now try to draw this out. So you look at

each of these images. Let us see the 15th image in your repository had the 72nd word, the

67th word and 54th word, whereas the 13th image has only the 67th word, the 17th image

has only the 72nd word, the 19th image has the 67th and the 54th word and so on and so

forth. Now what do you do?

(Refer Slide Time: 17:27)

So you take one of these visual words, which was occurring in your query image, and you

try to see which of your query images also had that particular visual word and you add a

count for that particular image. Similarly, 19 would have got a count of 1, 21 would get a

count of 1 for these images. So you are trying to see, you are now trying to compare

which of these repository images contain the same word which is there in your query

image.
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(Refer Slide Time: 18:03)

Similarly, you would do this for the 67th word and you will get an increase in count for

these two images, an increase in count for 13th and 21st just had a green, there was no

increase in count, but the 13th image has an increase in count now.

(Refer Slide Time: 18:25)
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Similarly, you would do this for the red visual word or the 72nd visual word. And at this

time the 15th image gets one more count. The 17th image gets a new count added here.

And the 22nd image gets a new count added here. So it is evident from this that the 15th

image has the highest count with respect to the query image and you now rank order all

your repository images based on a short list with respect to these visual words.

So you find that the 15th image has the best match. The second best match is the 19th

image with two common visual words. And you repeat this process to be able to get your

best match from your repository of images and this would be known as the image

retrieval problem.
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(Refer Slide Time: 19:16)

Let us try to ask how you would extend bag-of-words to classification. Now, we talked

about retrieval, but we now want to classify a given image as belonging to a particular

scene. For example, in the previous image that we saw, maybe that building has a

particular name and there are many monuments that you have and you want to classify an

image as belonging to a particular monument. So you want to treat this now as a

classification problem. How do you adapt this for classification?

(Refer Slide Time: 19:49)
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The way you would do it is once again, you represent an image by a vector z belonging to

, where k is the number of the visual words, very similar to how we did it for retrieval𝑅𝑘

problems.

(Refer Slide Time: 20:00)

But once you do this now, you can use a classifier to be able to classify these, the

frequency of visual words. So every image now becomes a vector representation of a set

of visual words, a histogram of visual words. And you would have a set of similar images

in your training data, which you would have also had a class label associated with them,

because remember classification is a supervised learning problem. So now you could just

use a classifier such as, say, naive bayes or support vector machines or any other

classifier for that matter.

If you are using naive bayes, you would estimate the maximum posterior probability of a

class C given an image z assuming features are independent, assuming the presence or

the count of each visual word is independent. You would simply run a naive bayes

classifier in this particular scenario. Remember naive bayes would become a linear

classifier. You could do this using a support vector machine. You could use an

appropriate kernel function in a support vector machine to perform the classification or

for that matter you could use any other classifier too.
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(Refer Slide Time: 21:06)

An extension of the bag-of-words is known as the vector of locally aggregated

descriptors or VLAD. It is very similar to bag-of-words with a small, but a significant

difference. Bag-of-words as we just saw would give you a scalar frequency of how many

times a particular visual word, which is obtained by clustering a lot of regions in your

training images or repository of images, how many times each of those visual words

occurred in a query image. So in some sense, this gives you limited information. You do

not have geometry here or you do not have what were the exact regions in your query

image. You are going to map them any way to a common visual word, which is the

average of similar visual words in your depository.

In VLAD, instead, what you do is you again have visual words, all of that remains the

same, but now you have, instead of a scalar frequency, you have a vector per visual

words, which looks at how far each of these features in your query image are from the

visual word. So you have a visual word which you would have obtained by clustering

groups of features in your training images.

Now, given a new feature in your query image, you look for how far that is from the

visual word you would get a residual vector. Similarly you take another feature that is

map to the same visual word and see how far that is with respect to the visual word and

you add up all the residuals and you would get one vector residual, which is the sum of
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all residuals that get mapped to the visual word that corresponds to the visual word. So it

is not a scalar frequency anymore, it is a vector of how far other features that map to this

visual word are in each dimension. This gives you a little bit more information that could

be more effective.

(Refer Slide Time: 23:09)

Let us see this a bit more clearly. If we had a bag-of-words representation, given a color

image, which is a three channel RGB input, you first converted to gray-scale. You could

adapt bag-of-words to color two, we are just taking a simpler example here. So once you

have that, you get a set of say 1,000 features and you convert that say to one dimensional.

If you had 1,000 key points, you convert that to 128 dimensional SIFT descriptors for

each of those 1,000 key points. Then you do an element-wise encoding to say 100 visual

words, let us assume you had 100 visual words. You take each of those 1,000 features and

map them to 100 visual words.

So you would have k such visual words and you would end up counting them, counting

the occurrences of each of those 1,000 features with respect to one of these 100 visual

words, you get a set of frequencies. Then you could do a global sum pooling and an L2

normalization of that final histogram vector to get your final bag-of-words representation.
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On the other hand with VLAD, you would do the same. You would convert the three

channel RGB input into a one channel gray-scale. You would once again get 1,000

features in your query image, convert that to 128 dimensional representations for each of

those 1,000 features. You would again assign each of those 1,000 features to one of k

visual words. But this is where the difference comes that you are now not going to get a

scalar representation or a histogram, you are going to get a residual vector for each of

those k visual words, which means this now is going to be a 128 cross k, into k rather

representation rather than a k dimensional representation.

Because for each visual word, you are going to see for all the features that got mapped or

all the key points that got mapped to a particular visual word what was the residual for

each dimension for each of those 128 dimensions.

And finally, you would get a 128 into k representation, which you would normalize𝐿
2

and use for practice. normalization is simply to ensure that the vector becomes a unit𝐿
2

norm, norm to be one and that is the VLAD descriptor.𝐿
2

(Refer Slide Time: 25:39)

To conclude this lecture, please read chapter 14.3 and 14.4 of Szeliski’s book. And

something for you to think about at the end of this lecture is how is bag-of-words
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connected to the k-means clustering algorithm. We already, I think, spoke about it briefly

during the lecture, but think about it and answer this more carefully.

Assuming you understood that bag-of-words is connected to k-means clustering, how are

extensions of k-means clustering, such as hierarchical k-means clustering or approximate

k-means clustering relevant for the bag-of-words problem. Your hint here is to look up

what are known as vocabulary trees.

(Refer Slide Time: 26:22)

And here are some references for this lecture.
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