
Deep Learning for Computer Vision
Professor Vineeth N Balasubramanian

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Lecture 15
Feature Matching

Over the lecture so far, we have talked about basic methods to process images, we talked

about operations such as convolution, correlation, and then we talked about how we can use

such operations to detect edges in images, corners in images, different kinds of corners,

different methods to extract those corners, as well as how do you describe these corners in

ways in which they could be used for further tasks. We also talked about how this process

could be similar to how the human visual system also perceives the world around us.

One of the aspects that we mentioned is, if you have two different images, and let say, you

want to stitch a panorama consisting of these two images or more than two we ideally detect

interest points in both of these images, get descriptors of each of these points in both of these

images and then we match points across these images.

How you match is what we are going to get into next. So, over the next few lectures we will

talk about a few different methods to match key points between images, not just key points

between images, we will try to use these methods to do other kinds of tasks like finding

different kinds of shapes and images such as circles, lines, or whatever shape you like, as

well as even more descriptors from what we have seen so far.

(Refer Slide Time: 01:52)

351

Most of this week's lectures are based on the excellent lectures of Professor Yannis, at the

University of Rennes, Inria in France.

(Refer Slide Time: 05:07)

If you recall, we gave this example earlier of two images taken of the same scene, perhaps

from different viewpoints, perhaps at different parts of the day, or perhaps with just different

illuminations or different camera parameters. And if you want to stitch a panorama of these

two images the standard process is to find key points and match them.

So, we know how to find key points in both these images individually. We also know how to

describe each of those key points as a vector. We have seen SIFT, we have seen HOG, we

have seen LBP, we have seen a few different methods to do this. The question that's left is if

you now have the key points and descriptors in two different images, how do you really

match them and be able to align them? That's what we will do next.

352

(Refer Slide Time: 3:05)

We will start with a very simple method called dense registration to optical flow, a fairly old

method, which pertains to a setting where you have very small change between different

images. So, if you again take the example of the cell phone, if you are going to gradually

move your cell phone over a scene, and then you want to stitch a panorama the differences

between successive images is going to be very little.

So, if you have tried this yourself you will notice that in certain cases if you move your hand

very fast you will get an error message to repeat and move your hand very slowly to get a

panorama from the app on your cell phone.

So, in these kinds of cases the displacement of the scene between successive images is very

little. In these settings you can use this kind of a method called dense registration through

optical flow. Here is a visual example of a scene where a boat is going across water. You can

see that the scene is more or less the same, but a few changes in the positions of the boats.

Our goal here is for each location in the image, say a key point in the image we want to find a

displacement with respect to another reference image. Once you have a displacement, we can

simply place one image on top of the other image and be able to align them. So, this kind of a

method of using dense registration is generally useful for small displacements such as

stereopsis or optical flow.

353

(Refer Slide Time: 4:50)

To understand how to do this, let's first take a one dimensional case. Let's work out the math

and then we will go into a two dimensional case. So let's consider a one dimensional case,

let's consider a function , which is given by this green curve and let's consider this𝑓(𝑥)

function , which is simply a displaced version of the same , or mathematically𝑔(𝑥) 𝑓(𝑥)

speaking I can say that is just a displaced version of and we also𝑔(𝑥) = 𝑓(𝑥 + 𝑡) 𝑓(𝑥)

assume that is small, we are only looking at small changes between successive images.𝑡

We know by first principles definition of derivative you can say that is given by∂𝑓/∂𝑥

which would be the formal definition. But we know
𝑡 −> 0
lim (𝑓(𝑥 + 𝑡) − 𝑓(𝑥 − 𝑡)) / 𝑡

now that is . So, which means we can write to be, .𝑓(𝑥 + 𝑡) 𝑔(𝑥) ∂𝑓/∂𝑥 (𝑔(𝑥) − 𝑓(𝑥)) / 𝑡

Where do we go from here?

354

(Refer Slide Time: 6:09)

Now, we define the error between these two signals in this particular case, because we are

considering a one dimensional equivalent right now that is going to be some weighted

combination. Let's assume that this is very similar to the weighted autocorrelation that we

talked about for the Harris corner detector, just that in that case we talked about

autocorrelation. Here, we are looking at differences between two signals f and g.

So, you have , that’s going to be the difference, and you do a weighted𝑓(𝑥 + 𝑡) − 𝑔(𝑥)

combination of these two to be able to find the actual displacement. So, you have

. Now, this second term, this first term here using a first order𝑤(𝑥) (𝑓(𝑥 + 𝑡) − 𝑔(𝑥))2

Taylor series expansion can be written as .𝑓(𝑥) + 𝑡𝑇𝑓(𝑥)

The remaining terms are the same across these two equations. The first term is simply

expanded as a first order Taylor series expansion and you get the right hand side of this

equation. Where do we go from here?

355

(Refer Slide Time: 7:21)

We know that the error is minimized when the gradient vanishes, so we take , which is∂𝐸/∂𝑡

just going to take a simple derivative of this right hand most term which is going to be 𝑤(𝑥)

summation of x, that part stays the same as here and the term that depends on is this𝑡

particular term .(𝑓(𝑥) + 𝑡𝑇𝑓(𝑥) − 𝑔(𝑥))2

So, if you take the gradient of that, you are going to have 2 into the entire term inside the

brackets into the derivative of the term that's affected by , which . So, you are going to𝑡 ∆𝑓(𝑥)

have into the entire term inside the brackets. We want to set this gradient to 0, and2∆𝑓(𝑥)

then solve for what we're looking for.

(Refer Slide Time: 8:13)

356

So, now simply expanding this equation, you can simply take terms out on both sides and

write this out as we are just going to ignore the summation and the arguments just for

simplicity of explaining this. If we ignore those you would have , these terms are𝑤∆𝑓(∆𝑓)𝑇

branched here. Similarly, if you take it the other side. 2 does not matter here𝑤∆𝑓(𝑔 − 𝑓)

because we are anyway equating into 0. So, now by doing this you can solve for the and∆𝑓

be able to figure out the displacement between these two signals.

What is the two dimensional equivalent it's exactly the same set of equations just that instead

of a 1D signal you will now have an image patch that's defined by a window w and we then

try to find what is the error between the patch shifted by in reference image , and the patch𝑡 𝑓

at origin and shifted image .𝑔

So, if you moved by a certain in the original image do you get is the question that we𝑓 𝑡 𝑔

want to ask. We want to find that that minimizes this change, because that would give you𝑡

the displacement between and . Now, by solving for this you can get the value of , find𝑓 𝑔 𝑡

the displacement and now be able to match or align these two images. A very simple solution.

357

(Refer Slide Time: 9:51)

One of the problems of this approach is the same aperture problem that we have dealt with

when we moved from images to the Harris corner detector.

(Refer Slide Time: 10:02)

Remember, the aperture problem simply means that you can only solve this problem for a

very local neighborhood. Why so? Because the entire definition or the way we solve the

problem assumes a local neighborhood. If you looked at the first order Taylor series

expansion that approximation holds only for a local neighborhood, which means this entire

formulation holds only if the displacement is inside a very small neighborhood and that's the

reason why we said that this method works when there is only very small changes between

successive images of the frame.

358

So, what do we do if there is more than a minute difference between these two images? For

example, a few slides ago, we saw those images of those mountain ranges. It did not look like

those two images were displaced by a very small amount; it looked like there was a

significant rotation or a significant perspective difference in how those pictures were taken.

How do you solve those kinds of problems?

(Refer Slide Time: 11:08)

And for that we move into what is known as white baseline spatial matching. In white

baseline spatial matching there is a difference from the dense registration just to repeat again,

in dense registration we started from a very local template matching process and we found an

efficient solution based on a Taylor approximation. Both of these make sense only when you

have small displacements.

359

(Refer Slide Time: 11:37)

But in wide baseline spatial matching, we are going to assume now that every part of one

image may appear in any part of the second image. It's no longer a small displacement; you

could have a corner point that was lying in the top left of one image and the bottom right of

the other image and we still want to be able to match these points across these images.

How do we go about this? The key intuition is going to be that we start by pairwise matching

of local descriptors. So, you have a bunch of key points in image one, and a bunch of key

points in image two. For each of these key points you have a descriptor, you now match those

descriptors with the descriptors of all key points in the second image.

Wherever you have the best match of descriptors you are going to say that this point in image

one is likely to match with this particular point a certain point in image two, and these points

could be at completely different coordinate positions in the first image and the second image.

So, we start by pairwise matching of local descriptors with no other order imposed and then

we try to enforce some kind of geometry consistency according to a rigid motion model. So,

we know that in the real world you can perhaps, rotate an image, translate or move your

camera on pan your camera, you can probably zoom in and zoom out, there are a few

different transformations that is generally possible all of them is what we mean as a rigid

motion model or geometric consistency.

So, we are going to assume a particular model that could have taken place and using these

pairwise matching of local descriptors we are going to try to solve what would be the

360

parameters of the transformation between the two images. This is going to be the key idea,

but we will now talk about how we actually go about doing this.

(Refer Slide Time: 13:29)

So, once again, in wide baseline spatial matching you could have two images such as this

where a region in one image may appear anywhere in the other. There could be a zoom in

zoom out, it could be a different angle or it could be translated by some bit any of those could

happen when we try to do this kind of magic.

(Refer Slide Time: 13:52)

So, as we already said, we first independently detect features in both these images, so each of

them are different features that you see across these images.

361

(Refer Slide Time: 14:04)

Then we try to do a pairwise descriptor matching for each detected feature, we can come up

with a descriptor such as histogram of oriented gradients, or local binary patterns, or the

variant of histogram of oriented gradients that SIFT uses, so on and so forth. You try to do a

pairwise matching of the descriptors between the key points on these two images.

Clearly, when there is a lot of change between two images it is not necessary that every key

point will match with some key points on the other. In this particular case you can see that the

car does not even exist in the second image. So, any key points on the car would not have an

equivalent match on the second image, which is perfectly fine with us. So, only a subset of

features that were detected in the first step would actually lead to matches in both cases.

In both these cases, even in the first image, only a subset of features will match with the

second image. Even among all the features detected in the second image, only a subset of

features from the second image would match with features in the first image. How do you

match? Once you get the descriptors in terms of vectors you can simply take the Euclidean

distance to match, you can use other kinds of distances too, but you can simply use the

Euclidean distance between the descriptors of the features in both these images to be able to

match.

362

(Refer Slide Time: 15:32)

So, once you get these tentative correspondences, we try to assume a certain geometric

model. For example, we can say that we know that in our particular domain only a translation

is possible or only a translation and rotation is possible because in my camera there is no

zoom in or zoom out, it could happen.

So, if you knew what were the conditions under which a particular capture was taken, so you

know what could be the transformation that could have taken place between the first image

and the second image or you assumed a certain rigid transformation, and you find among

those pairwise correspondences that we saw on the previous slide, which of them would hold

true to this kind of rigid transformation that I assume?

We will come a bit later in this lecture as to how that rigid transformation is represented and

how we find points that are in line. We will come back to this in a few slides from now, but

this is the overall idea. So among all of those correspondences you narrow down to a few

which satisfy your hypothesis of what could have happened.

363

(Refer Slide Time: 16:38)

And then once you get that subset of inlier correspondences you can simply match and find

the transformation and align one image on top of the other. So, let's talk about this in more

detail over the next few slides. So, we first extract descriptors from the key points in each

image, so for each detected feature you could do something like construct a local histogram

of gradient orientations, you could do other kinds of things too, this is just an example, you

find one or more dominant orientations corresponding to the peaks of the histogram.

Remember, in SIFT, we talked about finding the orientation of each key point, that's what

we're talking about here.

At that point, you may want to resample the local patch at a given location, scale or

orientation, based on what feature detector you used. You could have a scale for that

particular key point. So, you could have a location for that key point, you could have a scale,

you could also have an orientation so you could resample the local patch. When we say

resample if it's a rotated patch you may want to resample it by doing some interpolation so on

and so forth.

You can, you resample the local patch and then you find a descriptor for each dominant

orientation. That gives you your descriptors. Remember, again, just like how we spoke for

sift, you could take multiple descriptors for each corner key point if there are different

orientations that are dominant. We talked about this earlier too.

364

(Refer Slide Time: 18:06)

Okay, now at the end of that step we have a bunch of descriptors in image one, a bunch of

descriptors in image two. How do we go forward? For each descriptor in one image we find

its two nearest neighbors in the next image. Why two? It’s just one method you can also take

other kinds of nearest neighbors if you like.

If you in this method we take two nearest neighbors and we then evaluate the ratio of the

distance of the first to the distance of the second, so you have a distance between the

descriptor the first image to the first match in the second image and the distance of the

descriptor from the first image the same descriptor to the second closest match. If the ratio

between the two is one, which means both are good matches.

If in one case the distance is very low, but in the second case the distance is very high you

perhaps now know which of them is significantly closer, you can threshold to find out which

of them are strong matches. So, whenever this ratio is small you know that you have found a

very strong match, because the second year distance is very far away that is what this ratio

would measure.

So, whenever you have a strong match, you are going to consider that a correspondence, and

then after you do all these pairwise matchings you have a list of correspondences between

image one and image two. What do we mean by correspondences? We are simply saying that

descriptor D1 in image one corresponds to descriptor D10 in image two, something like that.

You can just write out a table of correspondences between these between the descriptors of

these two images.

365

(Refer Slide Time: 19:52)

Okay, here is an illustration of the ratio test. So, you can see here that for correct matches you

can see that the ratio of distances forms this kind of a distribution, it is much smaller.

Whereas for incorrect matches the ratio keeps going up and further towards one, in the

incorrect matches the ratio is going to be close to one, which means the first match is as good

as the second match.

Then you are not very sure whether the match is strong enough. When the first match

distance is much lesser than the second match’s distance you know that you are doing a good

job. You can, as I said, also expand this to more nearest neighbors and expand the concept of

ratio if you would like to get a better idea of the robustness of this match.

(Refer Slide Time: 20:40)

366

Once you have identified these good matches we move on and then try to estimate which of

them are inliers with the rigid transformation that we assumed. Before we go there let us first

try to find out why this is a difficult process by itself? Okay, we have so far spoken about a

few steps. Firstly, we have to choose key points or these kinds of correspondences which

allow for a geometric transformation that may not be trivial in several images.

Fitting the model or the geometric transformation to the correspondences that we have found,

could be sensitive to outliers. It is possible just by chance that your correspondence could

have been wrong because in the new image maybe there was a newer artifact that came in

which was not there in the first image, which ended up matching the key point of the first

image in that particular case could simply be an outlier match, which could make fitting your

geometric model a little harder.

To find inliers to a transformation you first of all need to find a transformation. So far, I kept

telling you that you can assume a transformation, but assuming a transformation is not trivial.

You need domain knowledge, you may perhaps need to do something more to be able to find

out what should be the transformation in the first place before fitting these correspondences

towards transformation.

In certain cases such as outliers, correspondences can also have a grace error. It is likely that

in certain cases the correspondences can lead to mistakes; it is possible that HOG may not

have been the right descriptor to get correspondences for certain features, so you could have

errors in these kinds of cases. An inliers are often less than 50 percent of your total

correspondences. Generally, even lesser, but they're typically less than 50 percent. So, which

367

means the number of inliers that you are going to be left with at the end is very few that you

actually can play with.

368

(Refer Slide Time: 22:44)

So for the next part, to be able to understand how do you match these correspondences to the

rigid transformation model? Let us actually talk about what we mean by geometric

transformations here. What do we mean by rigid transformations here, and then we will come

back and then try to align the correspondences to one particular transformation.

Given two images, i and i prime are equal at two data points x and x prime, we know that i of

x is equal to i prime at x prime. This simply says that across these two images you could map

the point x to the point x prime in the second image or rather you can write this as x prime is

some transformation of x.

We got the point x prime by perhaps rotating the first image or by translating the first image

or by zooming into the first dimension. We are going to refer to all those kinds of

transformations such as rotation, translation, and scaling as a transformation matrix . And𝑇

what does do? is an operation that takes you from a vector in and gives you another𝑇 𝑇 𝑅2

vector in . Remember any matrix can be looked at as a transformation in this perspective.𝑅2

So, given a point at a coordinate location in image 1, the transformation matrix takes(𝑥, 𝑦) 𝑇

you to another point in your second image. And this transformation is going to be a(𝑥', 𝑦')

bijection, which means it's a one to one match between image one and image two. Every

point in image one matches to only one point in image two and every point in image two

matches to only one point in image one, it's going to be a bijection.

369

(Refer Slide Time: 24:35)

Let us try to study what T looks like. T is a transformation, we said it's a matrix. So, for a

certain set of common transformations, T is fairly well defined, especially rigid body

transformations, and this has been extensively studied, especially in the graphics-based vision

that we talked about in the first lecture.

So, we will briefly talk about this now to understand how the matching is done. So, suppose

you have this green triangle in the first image, and you translate this rather you just move it

slightly along the or or on both these axes it moves to a slightly different𝑥 − 𝑎𝑥𝑖𝑠 𝑦 − 𝑎𝑥𝑖𝑠

location in the second image.

In this particular case, you would define the transformation to be given by a 3 x 3 matrix,

which is given a 1001, which is the top of this matrix, then you have , which2𝑥2 𝑡
𝑥

𝑡
𝑦

corresponds to the translation along the and translation along the . If you𝑥 − 𝑎𝑥𝑖𝑠 𝑦 − 𝑎𝑥𝑖𝑠

work this out and whenever you apply this transformation on . 1 is simply used as a(𝑥, 𝑦, 1)

normalized coordinate to represent this transformation we get an outcome which is , , .𝑥
^

𝑦
^

1

Why so? Let us analyze this a bit carefully. It's simply a matrix vector transformation. If you

simply did a matrix vector translation you will actually see that this is just another way of

writing a system of equations and the system of equations says . Similarly, you𝑥' = 𝑥 + 𝑡
𝑥

370

have . The third one doesn't matter, you are just going to have 1 is equal to 1,𝑦' = 𝑦 + 𝑡
𝑦

it does not matter, but this is exactly what we're looking for.

This is just another way, there is just a system of equations and we are simply writing the

system of equations in terms of a matrix vector transformation, a matrix transformation on a

vector to give you another vector. This is a translation. Let us see one more.

(Refer Slide Time: 26:39)

If you took rotation, this green triangle is now simply rotated. There is no translation, it is

only rotated. You can see that zero zeros are put here for the translation, which means there is

zero translation, but there is rotation. And in this case it is given by

in the upper 2x2 this 3x3 matrix. I will let you look at𝑐𝑜𝑠(θ), − 𝑠𝑖𝑛(θ), 𝑠𝑖𝑛(θ), 𝑐𝑜𝑠(θ)

this more carefully it's a simple expansion again you would have 𝑥' = 𝑥𝑐𝑜𝑠(θ) − 𝑦𝑠𝑖𝑛(θ)

and that simply represents the new coordinates based on your𝑥' = 𝑥𝑠𝑖𝑛(θ) + 𝑦𝑐𝑜𝑠(θ)

rotation angle .θ

371

(Refer Slide Time: 27:30)

So, you can see here that if you went back to the previous slide in translation there are two

degrees of freedom and . In rotation, just one degree of freedom is given by the angle𝑡
𝑥

𝑡
𝑦

theta.

(Refer Slide Time: 27:43)

Another transformation is called the similarity transformation, which has four degrees of

freedom, which combines rotation has two degrees of freedom due to translation, but you also

have a scaling aspect here which is given by r, which can change the size of the object in the

second image. And we see size or scale, remember it would correspond to zoom in or zoom

372

out in terms of the camera parameters. So, now you have r, , and four degrees ofθ 𝑡
𝑥

𝑡
𝑦

freedom in this geometric transformation.

(Refer Slide Time: 28:23)

Going forward, this is another example of a similarity transformation where you can see the

zoom out in action where the r has a non-zero value or a non-one value to be able to show a

similarity transformation where r is operational.

(Refer Slide Time: 28:42)

Another transformation is known as the shear transformation you can see here as to how the

triangle gets transformed between image one and image two. This is known as shear where

you apply pressure on one of the sides of the triangle and extend it and keep the other side

373

constant. So, this is given by changing just these quantities bx, by in your transformation and

the rest of them stay one, so then it is called shear. You can write out the equations of shear as

, . This is simply a linear system of equations and a way of𝑥 + 𝑏
𝑥
𝑦 = 𝑥' 𝑏

𝑦
𝑥 + 𝑦 = 𝑦'

writing the transformation.

(Refer Slide Time: 29:37)

Furthermore, a popular transformation known as the affine transformation is given by six

degrees of freedom, where you can have values for any of those six spots in your

transformation matrix that we spoke about. We are going to stick to these sets of rigid body

transformations at this time. There are certain transformations that also use these values at the

bottom which are going to projective transformations perspective transformations, we were

not going to get into it at this particular point in time, we were going to stick to affine

transformations.

(Refer Slide Time: 30:07)

374

So, in all of these cases, as you can see using those tentative correspondences that we get

between two images we can find out which x prime matches to x and y in your image one.

So, in image 2 could be matching with in image 1. So, we already have a list(𝑥', 𝑦') (𝑥, 𝑦)

of correspondences based on those matching of descriptors. Our job is to find out what are

the parameters of this transformation , that's what we want to look for. Clearly, this is about𝑇

solving a linear system of equations.

(Refer Slide Time: 30:44)

375

So, we want to solve a linear system, , where x and b are the coordinates of the𝐴𝑥 = 𝑏

known point correspondences from images, and and contains our model parameters that𝐼 𝐼' 𝐴

we want to learn.

376

(Refer Slide Time: 31:00)

Ideally speaking, if we had degrees of freedom in a given transformation you ideally need𝑑

the ceiling of correspondences. For example, for translation, two degrees of freedom𝑑/2

which means you need only one correspondence. If you have one point in one image and

another point in the second image you can find both and because you would know how𝑡
𝑥

𝑡
𝑦

much you moved in x and how much you moved in y. So for a given the d degrees of

freedom you need about ceiling as the number of correspondences from descriptors.𝑑/2

(Refer Slide Time: 31:44)

Okay, now, how do you solve this right? So we know now that just to recall, repeat what we

have talked about so far. We have found key points in each of the images. We found

377

descriptors and then we matched the descriptors between these two images and then based on

the nearest neighbor approach we prune those descriptor matches to a few set of descriptor

matches which are strong, and among those we now want to find out which of them will suit

my rigid body model that I am going to assume for my transformation between the two

images.

(Refer Slide Time: 32:29)

So, if I assume and affine transformation norm, using those set of correspondences that I have

I ideally have to solve for these six values as my transformation, and once I have solved for

these values, I know what was the transformation between these two images, so I can simply

place one on one image on top of the other using the transformation again, and be able to

blend them and create a panorama.

378

(Refer Slide Time: 32:50)

So, we are left with one task as to how do you actually estimate those parameters given those

correspondences?

(Refer Slide Time: 32:54)

Let's start with the simplest approach that we all know is if you have two points that fit a line,

that is the simplest approach that we all know, the simplest model that we can imagine. Let us

say the approach that we are going to use, but let us try to describe this further.

379

(Refer Slide Time: 33:09)

So, if you had a least squares approach to fitting correspondences this is what you would

have. If you have a bunch of correspondences here this is clean data, not many outliers. The

least squares fit would give you a fairly good equation for the line. We're just talking about

the transformation in a slightly more abstract sense now, but we will come back and make it

clear as to how you really estimate the parameters of the transformation.

380

(Refer Slide Time: 33:37)

However, if there are outliers in your matches then the least square fit fails and gives a very

different answer compared to what should have been the right answer. So, what do we do

here?

381

(Refer Slide Time: 33:58)

At this point comes to rescue one of the most popular methods for matching features between

images, which is known as RANSAC or stands for Random Sample Consensus. A very

simple iterative method can be slightly computationally intensive, but works very, very well

and has been used for many decades to be able to match correspondences between two

images.

For that matter it can match correspondences not just between images between any set of

observations in data. So, let us assume these are a set of correspondences that we have. These

are data with some outliers and we ideally want to fit a line to this particular model. So, we

will talk about fitting a line to data at this point. We will then later come back to the analogy

of taking this to fitting an affine transformation or any other rigid body transformation to a set

of correspondences in images.

382

(Refer Slide Time: 35:05)

So, if you have such a set of data points and we want to fit a line to this particular set of data,

what random sample consensus suggests to us is, you take two points at random, any two

points, you can see two points that have been picked in red. We know how to fit a line for two

points.

(Refer Slide Time: 35:18)

383

So you fit a line for those two points. You take a neighborhood of that line on both sides and

see how many points in that neighborhood are inlier points or how many of them correspond

to points that you are looking for. You can see here in green that there are about six points

that are in the neighborhood of this line that fit on these two points.

384

(Refer Slide Time: 35:47)

Now, you take another two points randomly. Once again, fit a line through those two points,

take a neighborhood and now count how many of four of your given data points lie inside this

neighborhood. Now, you can see that this is going to be a fair few, it's going to be about 15,

or 20, which is greater than the 6 that we got in the previous random pick that we had.

What does this tell you? That this line may be a better fit than the previous line. So among all

the lines that we have seen so far we try to retain the line which has the highest number of

inliers, and throw away the previous lines that we came across. This is the line that we have

now.

(Refer Slide Time: 36:32)

385

You again, repeat this process, pick another two points, pick a line, see how many are in the

neighborhood of that line. Once again, you get a lesson number for such a line and you keep

repeating this process over and over again, but keep your best hypothesis saved with you.

And you see that in this particular example, as you keep repeating this over and over again

this line that you have here which goes through a set of random picks is the best possible

hypothesis and that is the hypothesis that you are going to go with, that the model that you're

going to say that the set of outliers fits.

(Refer Slide Time: 37:07)

386

So here are other examples of lines that you can draw. And in all of those cases, you know

that the line that you had in the middle has the highest number of inliers in this neighborhood.

And that's the one that you will go with. Lets try to write out RANSAC more formally in

terms of an algorithm.

So, given a set of tentative correspondences now we are looking at the correspondences that

we started with so you have a set of correspondences which is your data. Let's look at n,

which is the minimum number of samples to fit a model. Once again, remember, if you are

trying to fit a model for rotation it has one degree of freedom, so you at least need one set of

correspondences to be able to solve the problem that is what that one set of correspondences

is what we are referring to as n here.

387

And let us assume that in each of these cases you are going to have a score , which𝑠(𝑥; θ)

gives us the score of sample x given model parameters, . is just the model parameters thatθ θ

we are trying to learn. If it's rotation you're going to have just one parameter . If it'sθ

translation, then theta would be , .𝑡
𝑥

𝑡
𝑦

If it's, this is for translation. If it's for affine we already saw that you are going to have , all𝑎
11

the way to , 6 six such values, that is going to be affine, so on and so forth. Okay, those𝑎
23

are your model parameters that you want to learn. So, what RANSAC says is, you start with

the hypothesis verify the hypothesis, and keep iterating and storing the best hypothesis so far.

So, you draw samples from x at random. Let's call that set of n samples as . You fit the𝑛 𝐻

model to and compute the parameters. If your data are consistent with this hypothesis, most𝐻

of your data are consistent with this hypothesis you compute a score. If this score was better

than the earlier score you make the new hypothesis the best hypothesis, and you keep

repeating this process.

Let's talk about this in the context of matching features. So, in this case let us say you drew

about say two different or let's take an affine transformation, which has six three parameters,

so you need about three sets of correspondences to be able to get a good match between these

two, so you draw three pairs of correspondences, the best correspondences that you have, you

fit an affine transformation model, which means by fitting you mean you can actually solve

for to through using a linear system of equations.𝑎
11

𝑎
23

Once you solve for using a linear system of equations using at least regression fit you will get

a bunch of values to . Now, you try to see among all your correspondences, which of𝑎
11

𝑎
23

them would stay within an neighborhood of this particular transformation. Rather, you takeϵ

all the points from image 1, which you were considering in your inliers which you are

considering in your tentative correspondences, apply this transformation, the transformation

for which you now have to values, you would see where those points go to in image 2.𝑎
11

𝑎
23

If for many of your correspondences these matches lie within an neighborhood you areϵ

going to consider that a good match has a good number of inliers and the best hypothesis so

far. And you just keep repeating this by randomly drawing three, three correspondences each

time in case of an affine transformation. For a translation transformation you just have one

388

correspondence that you have to keep drawing to be able to fit these models. That's the main

idea of RANSAC.

(Refer Slide Time: 40:54)

Some limitations of RANSAC is when the inlier ratio which means the number of inliers in

data divided by the number of points in data is unknown, then you could have problems in

being able to fit. Also when the inlier ratio is very small, and the minimum number of

samples to be drawn is large.

Let us assume that your definition of a model is such that you need to let’s say there are 12

free parameters, which means you need at least six correspondence that you need to draw to

learn each model and then you need to check for how many of them lie within a particular

epsilon distance of the correspondences so on and so forth. If your original inlier ratio itself

was small in these images then you could have a tough time, in this particular case it will be

equivalent to having about iterations to ensure probability of failure. Just to expand106 1%

on this I am going to leave this for you to work this out by just giving a few hints and you can

work it out later.

389

(Refer Slide Time: 42:05)

Remember that w is an inlier ratio, which means, is the probability that all n points that𝑤𝑛

you picked are inliers, so you pick n points that is the number of points that you have to pick

to be able to solve for this model and is the probability that all n points are inliers, which𝑤𝑛

means, is going to be the probability that at least one of those points is an outlier.1 − 𝑤𝑛

And when one of those points is an outlier we are going to get a bad model which may not

have too many correspondences in its neighborhood.

390

(Refer Slide Time: 42:46)

If you round k different iterations, then the probability that the algorithm never selects a set

of n points which are inliers your probability is going to be . This you are seeing(1 − 𝑤𝑛)𝑘

is straight forward. Using these three terms you should be able to work out why this would

happen as an example here. Try working out by yourself.

(Refer Slide Time: 43:16)

Here are a few visual illustrations of how well RANSAC works for different kinds of

transformations. Here is an example of rotation, this is the original book rotated to a certain

degree and you can see that it is not a book sorry I think its a food box and this is the foot box

391

placed in a different place in the second image and RANSAC finds fairly good

transformations between these two settings.

(Refer Slide Time: 43:43)

It also works well at estimating what is known as a transformation matrix or a fundamental

matrix, when you relate to two views of the same image, if you have two different views

remember, this is how you would build a 3D model of a given scene. And if you wanted to

build a 3D model of say the statue you would ideally take multiple images by slowly moving

around this particular 3D object and you would get a 3D model. And in each of those cases

between every pair of images that you capture you have to estimate these transformation

matrix, which is also known as the fundamental metrics in this particular case.

(Refer Slide Time: 44:22)

392

RANSAC is also used for what we started with in this lecture, which is to compute what is

known as a homography, which is typically the term used for the transformation matrix in

cases of image stitching. We said that it could be an affine transformation, translation, a

rotation so on and so forth that transformation metrics is typically called a homography when

you do it in the context of image stitching.

(Refer Slide Time: 44:50)

393

That concludes this first lecture on feature matching. We will see a few other methods also as

we go, but your readings for this lecture are going to be chapter 4.3 and chapter 6.1 of

Szeliski’s book. As well as if you are interested the papers on the respective slides for more

illustration and the references are here.

394

