NPTEL
NPTEL ONLINE CERTIFICATION COURSE

Discrete Mathematics
Graph Theory - 3 &
Generating Functions

NetworkX - Random graphs

By
Prof. S.R.S Iyengar
Department of Computer Science
IIT Ropar

In the previous videos we have seen all the theoretical part of graph theory, we have seen
several topics like Eulerian, Hamiltonian, Coloring, Planar graphs and so on, we have seen all
the theory part of it, now we will be seeing how to implement it in Anaconda, the Spyder.

Now we will start with learning how to create a random graph,
(Refer Slide Time: 00:36)

OeE«E0 G HacEanw B EX FP &3 tmmicm EE 4
¥ ke WA nra
Wihen 3.6.5 |Anaconda, Inc.| {(default, Mar 29 28138, 13:14:23)
Mype “copyright™; "credits" or "license” far more informatiomn.
[Pytham &.4.8 An @nhanced Interactive Pythan.
- Random graphs

BW _ Cac-of-ima: LF Encodng: UTF- L @ columec 1 venans S5%

what do I mean by that? If I specify the number of vertices and the number of edges, a random
graph should be generated, right, we will see how to do that, the first step is to import networkx
as nx, now | have loaded networkx, what I am going to do is first create a random graph, let me
show you how to do it, so I’ll name the graph as G, G = nx.gnm, what do I mean by GNM? G
stands for graph, NM stands for number of vertices and number of edges respectively, GNM
random graph like this with underscore in middle random_graph and in brackets do you see
here what is shown? N,M, right, so N is the number of nodes, and M is the number of edges, so
(Refer Slide Time: 01:42)

Type "copyright", "credits" or "license" for more information.
IPython 6.4.8 —— An enhanced Interactive Python.
In [1]: import networkx as nx

In [2]: G=nx.gnm_random_graphf|
ﬁ.r-gurrents

graphin, n, seed=None, directed=False]

let me say some 10 vertices and some 15 edges [want, so if I close the bracket the graph has

got loaded, the next would be to draw it, nx.draw(G), do you see this graph here, the graph is
disconnected.

(Refer Slide Time: 02:04)
In [3]: nx.draw(G)

In [4]: |

Let us try once again and see if we get a connected graph, I’'m again going to generate G itself
here, and I’'m going to give nx.draw(G) do you see that this time we have obtained a connected
graph,

(Refer Slide Time: 02:22)

In [6]: |

let us check if the size of the graph is same as that we mentioned, yes, do you see that I had
mentioned 15 here, and I have obtained 15, size stands for the number of edges.

Now we have seen how to create a random graph, by specifying the number of vertices and the
number of edges, now here comes another cute aspect of graph theory, I can generate a random
graph using the parameter probability, how do I do that? Instead of number of edges I specify
the probability of an edge between 2 nodes, do not worry I’'m not going to use any aspect of
probability here, for those who do not know you can understand it this way, I take a coin and I
toss it, in case I get a head I draw an edge between 2 vertices in case I get a tail I don’t draw, [
don’t draw an edge between 2 vertices, and this holds true for all the pairs of vertices in the
graph.

Now observe what i am going to do now, let me clear the screen and start a fresh, so I’'m
creating a new graph H here as nx.gnp, you see GNP stands for graph on N vertices and P
stands for the probability, do not worry I am going to explain what are we going to do next, so
random graph, now I’m going to specify the number of vertices first, right, let me say I’'m going
to draw a graph on let say 10 vertices or 12 vertices, and now among any 2 vertices of all this
12 vertices, if a head comes I’m going to draw an edge, if a tail comes I’m not going to put an
edge, what does that mean? It means between any two vertices there is a 50% chance of putting
an edge either you put it or you don’t put it depending on whether you get a head or a tail, right,
so the chance is 50% or 0.5 to be precise.

Now if I mention like 0.5 here and close the bracket you see the graph has got created, let us see
I’m going to draw the graph nx.draw, nx.draw(H) you see we have obtained the graph here,
(Refer Slide Time: 05:30)

IEYE EE-1 AW

TypeError: draw() missing 1 required positional argument: 'G'

In [18]:

In [18]: nx.draw(H}

In [11]:
Pemissons BW Ergd-od-lines: LF Ercoding: U

it’s a connected graph between 12 vertices with 0.5% chance of having an edge between any 2
vertices, what do we mean by that? Let us check the number of edges in this graph, so I have to
give H.size you see 33 it says, there are 33 edges in this graph.

(Refer Slide Time: 05:56) -

|.-"'|

In [11]: H.size()
Out[11]: 33

In [12]: |

1

Now if in case it’s a complete graph on 12 vertices, what should happen? What is the total
number of edges possible in a graph, you must be knowing that the total number of edges
possible in a graph is N choose 2, right, N choose 2 is here it is going to be 12 choose 2 because
N is 12, so 12 choose 2 happens to be 12 into, let me calculate that, 12 x 11 and 132 divided by
2 I want, so it is 66, right,

(Refer Slide Time: 06:52)

In [11]: H.size()
Out[11]: 33

In [12]: 12%11
Out[12]: 132

In [13]: 132/2
Out[13]: 66.0

In [14]:

I

so if it’s a complete graph on 12 vertices I will have 66 edges, but since there is a 50% chance
of having an edge between any 2 vertices intuitively speaking you feel that 33 edges should be
present in the graph, right, which is what we have obtained here, but trust me this is not going
to happen always, we are not very sure if we’ll get 33 edges or not.

Now if you’ve not understood what I have done, it is perfectly fine I’'m going to repeat the
entire process again, let me again take a H = nx.gnp random_graph, so random graph will get
created, ’'m again going to take 12 vertices and with a 50% chance of having edges between
any 2 nodes, nx.draw(H) so you see we have some edges

(Refer Slide Time: 08:05)

L & Sgyder Pyihon 3.8}

DEE Lm0 OB G HCEEpE OX A2 &9 v
3 Corsabke 104

In [19]: H=nx.gnp_random_graph{12,8.5)

In [2@8]: nx.draw(H)}

In [21]:

here let me check the size of this graph H.size is 31, did you observe last time we had got 33
edges that was perfect, right, because there was 50% chance, but I’'m sure if you are trying it on

your machine you might really not end up having 33, because it’s a random graph you might
get some other graph and I am getting some other graph here, right, it is same as telling if I toss
a coin say 10 times, it’s not always obvious or it is not sure that we will get 5 times head, and 5
times tail, it might happen 7 and 3, or 8 and 2, or 9 and 1, or 10 and 0, we don’t know, but I’'m
going to repeat this experiment several times, how do I do that? We’ll see, I’ve drawn the graph
here but each time I’m not going to draw the graph, how I’'m going to do that? Let us see.

Let me name total, you just observe what I am going to do from now, it’s not really essential
that you understand each point, you can observe and at the end of this, end of next 5 to 10
minutes you will be able to grasp things yourself, so in order to tell that after I repeat this
experiment several times [will end up having 33 edges in the graph, I’'m going to run a short
piece of court, so now I have given this total edges, now for I in range let me say 10, please be
observing H = nx.gnp_random_graph on 12 nodes and 0.5 chance, M = size or H.size,

total edges .append(m),

(Refer Slide Time: 10:52)

|II --"'---- r"" 5

In [21]: H.sizel)
out[21]: 31

In [22]: total_edges=[] F

In [23]: for i in range{1@):
i H=nx.gnp_random_graph(12,8.5}
A m=H.size()
e total_edges.append(m)

Fermissans: AW Ered-at-limes: LF E
now let me explain what I have done, you see I have created total edges here, I want to get the
output in terms of total number of edges, now for I in range 10, what does this mean? I’'m
repeating this experiment 10 times, right, this entire thing which is inside this for will be
repeated 10 times, what is it which is getting repeated? I’ve created a graph with 12 vertices,
and probability 0.5, right, now once the graph is created I want to check the size, now once the
size is created I’'m going to append it, what is it? What do we mean by appending? Appending
is not but keeping several things one the side other, right, append M means all the sizes after
repeating the 10 times you will be getting 10 graphs, so the size of each graphs will just be
written side by side, you can see that now.

I’m going to print total edges, I hope now you are able to understand why I did total edges, you
see the 10 edges I have been just written one the side other,
(Refer Slide Time: 12:15)

L] & Spyder (Python 3.6)
NBERLEC PHBRG HEEEp B EOX £ ¢ mueoo
;l Console 1A

In [22]: total_edges=[]

In [23]: for i in range(1B):
H=nx.gnp_random_graph(12,@.5)
m=H.size()
total_edges.append(m)

In [24]: print(total_edges)
(28, 31, 38, 29, 33, 36, 34, 25, 38, 35]

In [25]: | !

28, 31, 38, 29, 33, 30, 34, 25, 30, and 35, do you see we haven’t always got 33 edges in the
graph, so it’s not very intuitive, right, now I want to take the average of all this, why? Because |
say that when I repeat this experiment several times and when I take the average, ’'m sure of
getting the 33 edges which I should be getting in the graph, how I am going to do that? Import
numpy as np, so for such operations as I had mentioned in the earlier video we will be using
this library called numpy.

Now I’m going to take the average of all these edges, and I’m going to print that, print
np.average of total edges, we want the average of the total number of edges, right which I’ve
been appended here, how do we take the average of it? Np., we use the library numpy and we
take the average, do you see we have not again got 33 as the average, it says 31.3, how do we
obtain 33 then? Well, if I repeat this experiment for say 100 times I’m sure of getting 33, let us
check. I’'m going to change for I in range 10 to let say 100, rest everything remains the same, I
wanted to create the graph H, take the size, appended, right, now I’'m going to print the total
edges, do you see the 100 edges here which I have got appended,

(Refer Slide Time: 14:17)

| TR | * Sgpdai il 8]

=@ sFHon G H cEaEn B EOX FP £ 4 tmmicm E B
LT Somew
Im [27]: printinp.averageltatal_edges))

1.3

[[28]): far i in ranpe(18@]:
S H=nx.gnp_random_graph{ 12,8, 45}
m=H.sizell
Gl Lotal_edges, append (m)

In (29} printitotal_edgesh

|28, 31, 34, 2%, 33, 38, 34, 25, 38, 35, 24, 31, 42, 33, 31, 32, 37, 29, 26, 29, 29, 32, 28, 32, 32, 36, 42, 35, 34, 33, 31,
4, 36, 32, 28, M6, 29, 25, 25, 2B, 37, 31, 29, 36, 33, 12, 35, 34, 38, 29, 32, 35, 28, 35, 3@, A, 33, 31, 32, 21, 25, M,
i1, 35, 23, 32, 31, 34, 38, 3v, I8, 41, 31, 43, =@, 33, 35, 31, 33, 34, 35, F, 36, 34, 32, 31, #4, 31, 30, 48, 38, 36, 34,
w, 37, 34, 35, 34, 29, 41, 20, 33, 36, 29, 35, 35, 29, 34, 42, 37]

Im [38]: |

Fumimiom: B Laz-of-irma: LF Encodiro: UTF-B Lirm: @ Colemre 1 Memars B1%

so now I’m sure obviously, manually calculating the average is a very tedious and cumbersome
job and hence we are going to take, we need not import numpy again, clear, so np.average of
total edges, do you see this? 32.45454545 it goes on, right, it’s almost close to 33, but still we
have not got 33 as the exact number of edges.

Now let us again repeat it for say 1000 times, now I’'m going to repeat this experiment for 1000
times and I’'m going to print the total edges, you see the total 1000 edges here is difficult to
even redetect one shot right,

(Refer Slide Time: 15:23)

OEERO rHEGGE S B EX FPO b vmomem [|
Hl_ Comclo ke = i = S . ;

a1, 38, 31, 35, 31, 36, 35, 28, 33, 32, 36, 31, 38, 33, 24, 33, 39, 34, 27, 33, 3@, 24, 37, 31, 21, 33, 29, 24, 35, 32, 26,
£, 3, 35, 35, 3, 35, M, 38, 33, A, 36, 34, 3, 30, 35, 40, 29, 33, M, 32, 34, N, 3}, 32, 31, 5, 35, 36, 33, M, 36,
42, 38, 34, 33, ¥4, 37, 38, 34, 4@, 38, 32, 34, 28, 33, 37, 36, 99, 3B, 3B, 35, 31, 32, 34, 32, 34, 45, 32, 32, 3%, 29, 3E,
i3, 31, 36, 39, 41, 31, 29, 34, 38, 36, 3@, 315, 28, 27, 34, 20, 27, 28, 30, 36, 31, 33, 32, 34, M, 33, 26, 27, 2T, 15, 43,
28, 15, 36, 31, 3, 36, 33, 37, 33, 38, 32, 32, A7, 35, 44, 34, 24, 22, 33, 20, 31, 34, 26, 33, 23, 33, 27, 23, 38, 24, 28,
a7, 34, 33, 32, 3, 35, 38, 36, 26, 49, 36, 28, 31, 37, i, 3], 4, 37, M, 33, W, 33, N, 3B, M, 33, 4, 33, 38, 37, 37,
a2, 29, 38, 35, ¥, 30, 35, 38, 3@, 33, 31, 38, 38, 41, ¥, 33, M, 27, 29, 28, 37, 39, 31, 34, 237, 37, 37, 33, 3@, 37, 3,
9, 37, 38, 3@, 41, 35, 27, 33, 139, 31, 3@, 27, 29, 33, 34, 37, 33, 33, 36, 32, 35, 3a8, 24, 38, 39, 331, 28, 27, 11, 21, 25,
34, 36, 33, 33, 33, 37, 34, 3P, 3T, 23, 3D, A7, A3 39, 24, 31, 39, 23, 33, 23, 34, 31, 31, 2T, 25, 36, 34, 24, 3, 24, M4,
33, 32, 33, 3@, 33, 34, 31, 3B, 36, 33, 2, 34, 29, 37, 32, 3V, 2T, 3L, 31, 37, 34, 38, 31, 3@, M, 37, 36, 33, W, 24, 31,
27, 33, 36, 38, 33, 3%, 41, 33, 4z, 32, 32, 33, 37, 31, A, 2B, 29, 37, 3, 31, 32, 25, 32, 34, 37, 31, 38, 25, 39, 26, 4B,
15, 28, 32, 34, 32, 2B, 35, 28, 37, 37, 34, 33, 35, 3@, 3&, 42, 36, 25, 28, 39, 42, 37, 34, 33, 31, 35, 31, 26, 31, 36, 37,
33, 36, 27, 033, a4, 34, 33, 37, 39, a4, 28, 31, 26, B, 38, IT, 33, 2B, 42, 3V, 32, 3?29, M, 3T, 26, 3G, 38, 34, 32,
35, ¥, 34, 33, 3, 2v, 37, ¥V, 3, M, 34, 31, &7, 36, 33, 3, 33, 48, I, 35, 34, 3, I8, 36, 34, IV, 33, 3@, 33, 35, M,
24, 32, 37, 29, 31, 34, 38, 35, 35, 33, 32, 32, 29, 33, 5, 36, 3z, 33, 37, 33, 29, 35, 38, 36, 78, 25, 31, 38, 3%, 36, 37,
35, 38, 33, 33, 34, 38, 29, 31, 31, 44, 37, 34, 38, 33, 37, 38, 37, 35, 31, 18, 28, 31, 36, 38, 34, 20, 35, 27, 26, 29, 3,
7, A6, 35, 35, 33, 34, 34, 25, 38, 26, 2B, 29, 33, 35, 24, 28, 32, 2@, 4B, 21, 32, 33, 24, 34, M, 34, 3T, 27, 35, 36, 29,
e, 35, 34, 37, 33, 25, 36, 38, 27, 24, 3@, 37, 36, 35, 34, 31, 3@&, 38, 25, 34, 32, 4@, 39, 35, 7, 38, 29, 31, 3%, 31, 32,
32, 33, 38, 4@, 35, 30, 33, 26, 31, 34, 2V, 31, 26, 3@, 33, 33, 35, 3B, 32, 35, 36, 23, 31, 41, 31, 3%, 32, 27, 41, 31, 29,
1, 36, 28, 25, 30, 33, 35, 34, 31, 34, 33, 29, 34, 28, 32; 36, 34, 39, 13, 38, 39, 36, 33, 32, 32, 32, 39, 32, 1B, 29, 18,
B, 26, 36, 29, 24, 31, 41, 32, 36, 36, 38, 28, 35, 3F, 3§, 32, 35, 2\, 30, 36, 31, 24, 34, 4@, 3, 38, 34, 36, 28, 34, 35,
33, 32, 35, 36, ¥, 36, 31, 36, 32, 34, 35, 26, 32, 28, 33, 33, 32, 34, 34, 32, 27, 29, 33, 31, 34, 43, 33, 35, 38, 33, M,
33, 313, 28, 31, 35, 33, 36, 32, 35,031, 33, 29, 37, 29, 36, 37, 24, 33, 15, 33, 41, 38, 37, 32, 34, 31, 38, 34, 32, 29, 36,
33, 34, 31, 36, 34, 28, 31, 32, 41, 35, 33, 24, 34, 28, M, 26, 32, 43, 33, 34, 32, 33, 32, 36, 37, 33, 3&, 35, 318, 27, 37,
34, 31, 41, 34, 3, 41, 34, 36, A7, 35, 42, 3§, 33, 38, B, 29, 13, 24, I8, 26, 33, 31, 42, 310, 33, 33, 28, 41, 40, 34, @9,
34, 34, 32, 35, 31, 34, 29, 32, 32, 37, 33, 36, 38, 26, 34, 36, 36, 33, 3@, 31, 33, 27, 35, 26, 34, 26, 35, 37, 36, 37, 26,
i3, 32, 38, 35, 32, 33, 36, 4B, 34, 34, 35, 32, 33, 29, 34, 24, 31, 32, 4@, 34, 35, 31, 35, 36, M)

, : + Ry

In [33]: |

now I’m going to take the average of these, you see we éré-véry close 32.96121 so on,
(Refer Slide Time: 15:30)

32, 33, 3@, 40, 35, 30, 33, 26, 31, 34, 27, 31, 26, 3@, 33, 33, 36, 38, 32,
731, 36, 28, 25, 38, 33, 35, 34, 31, 34, 33, 29, 34, 28, 32, 36, 34, 39, 33,
338, 26, 36, 29, 34, 31, 41, 32, 36, 36, 38, 28, 35, 32, 35, 32, 35, 38, 30,
333, 32, 35, 36, 22, 36, 31, 36, 32, 34, 35, 26, 32, 28, 33, 33, 32, 34, 34,

33, 33, 28, 31, 35, 33, 36, 32, 35, 31, 33, 29, 37, 29, 36, 37, 28, 33, 35,
B33, 3a, 31, 36, 34, 28, 31, 32, 41, 25, 33, 28, 34, 28, 28, 26, 32, 43, 33,

34, 31, 41, 34, 3@, 41, 34, 36, 37, 35, 42, 38, 33, 38, 36, 29, 33, 24, 35,

34, 34, 32, 35, 31, 34, 29, 32, 32, 37, 33, 36, 38, 26, 36, 36, 36, 33, 30,

33, 32, 3@, 35, 32, 33, 36, 48, 34, 34, 35, 32, 33, 29, 34, 24, 31, 32, 40,

' In [33]: printi{np.average(total_edges))
1 32.961261261261264 T

In [34]: |

ik Permissions: AW End

so the average says very close to 33 and hence we see that 33 edges are possible when we
create a graph on 12 vertices with probability 0.5, when you run the piece of court for say 100
times, I’'m sure most of you would have got 33, most of you wouldn’t have got it, but still if you
keep increasing the number of times you repeat it you will end up having 33 edges.

IIT MADRAS PRODUCTION

Founded by
Department of Higher Education
Ministry of Human Resources Development
Government of India

www.nptel.iitm.ac.in

Copyrights Reserved

http://www.nptel.iitm.ac.in/

