NPTEL
NPTEL ONLINE CERTIFICATION COURSE

Discrete Mathematics
Graph Theory - 1

Story so far — Using NetworkX

By
Prof. S.R.S Iyengar
Department of Computer Science
IIT Ropar

So we saw the various layouts for visualizing the graph,

(Refer Slide Time: 00:09)

[} & Sprcar iFython 261

MBS =Ea: E{ i G M & = s B BOBX FA &3 vovdaiag II

¥ Console 118 -
r : ity

n [116]:

we had seen spectral, random, spring and so on. Now there is another nice command which will
give M.order it says order, and then brackets like this, what is it going to do? By order we mean
the number of vertices,

(Refer Slide Time: 00:33)

o

iy

In [116]: M.order()
Out([116]: 70

In [117]: |

see it's showing 70 initially I had chosen M to have 70 vertices, and now if I give M.order and
brackets it's showing me 70 which says that there are 70 nodes in the graph.

Similarly M.size you must be guessing what size means, size means the number of edges which
the graph will have, let me check oh it is having 2415 edges, this graph is quite big you see,

(Refer Slide Time: 01:11)

H|

RO

In [116]: M.order()
Out[116]: 70

In [117]: M.size()
Out[117]: 2415

In [118]: |

now there are several more things which we can do with nx. let me me check nx.tab if you give

you can see here the various options
(Refer Slide Time: 01:20)

1

iy

nx.ExceededMaxIterations

nx.Graph
In [116]: M.onx.GraphMLReader
Out[116]: 7@ nx.GraphMLWriter
nx.HasACycle
In [117]: M-Snx. LCF_graph

Qut[117]: 241nx.Mu1tiDiGraph
ny Mult+ifiranh

In [118]: nx.

nx.graph, nx.digraph, multigraph, well you'll be learning all of these in the coming week.

For now let me check something which is very relevant to whatever we have learnt, okay, let
me go to classes, circular, community, let me say G is something like, yeah, do you see
something called graphical here

(Refer Slide Time: 01:48)

1
lq

Hu!

A Y ULl WL LU e

nx.graph_number_of_cliques

nx.graphical
In [116]: M.0ny graphmatrix

Out[116]: 70 nx.graphml

In [117]: M.d"X-9raphviews
Out[117]: 241 NX-greedy_color
nx.grid_2d_graph

In [118]: nx.q|

now let us see how is it helpful for us, well I am going to do something like this now,
nx.is_graphical and I am going to give a question mark
(Refer Slide Time: 02:02)

1

ily

In [116]: M.order()
Out[l1l6]: 70

In [117]: M.size()
Out[117]: 2415

In [118]: nx.is_gkaphical?

you see something here written here, true if the sequence is a valid degree sequence, and false if
not,
(_Refer Slide Time: 02:13)

= Spypcar (Fython 16

En“Se rOBREHEScEw BOX FA €9 vowm 1]
=3 Conscle 1A E{L
bELlIJEIILE H LisL U1 LLETau L Lared el

A sequence of integer node degrees

method : “eg" | “hh"
The method wsed to validate the degree sequence.
"eg" corresponds to the Erdds-Gallail algerithm, and
“hh" te the Havel-Hakimi algorithm.

Returns

valid : bool
True if the sequence is @ valid degree seguence and False i1f not.]

Examples

=== G = nx.path_graphid)

=== segquence = {d Tor n, d in G.degreel})
»»> nx.is_graphicaldsequence)

True

References

Erdis-Gallai
[EG186@]_, [chouduml986]_

Have L-Hakimi
[havel1955] _, [hakimil962]_, [CL199&]_

File: ~fanaconda3/Lib/python3. 6/ site-packages/netwarkx/algorithms//graphical.py
Type: function

In [119]:

P Ll End=af=|l LF Encading: UTF=A Linm: A Calumin
well, this is very much self-explanatory, if I give a sequence and if I ask if the sequence, if the
degree sequence is graphic or not, we have used the word graphic earlier they are using the

word graphical well it means the same, you will know if a graph can be drawn on the given
degree sequence or not, so it will give the value either true or false depending on how and what
the sequence is.

(Refer Slide Time: 02:44)

>>> G = nX.path_graph(4) 11
>>> sequence = (d for n, d in G.degree()) Re
>>> nx.1is_graphical(sequence)

True

References

Erdés—-Gallai
[EG1960] , [choudum1986]

Havel-Hakimi

[havel1955] _, [hakimil962]_, [CL1996]_
File: ~/anaconda3/1lib/python3.6/site-packages/net\
Type: function

In [119]: 1

So let me define my sequence L to be in square brackets 2, 2, 2, and now what [am going to
check is it graphical? Well you had all been already seen that it's not nx.graphical, if I give this
it's going to show up an error, so what I'm going to do is nx.is_graphical, so now and then in
bracket I'm going to give the sequence L, yes, it is true,

(Refer Slide Time: 03:18)

References '4

ROY
Erdés-Gallai J
[EG1960] , [choudum1986] _
Havel-Hakimi
[havel1955] , [hakimi1962] , [CL1996] _
File: ~/anaconda3/lib/python3.6/site-packages/net\

Type: function
In [119]: 1=[2,2,2]

In [120]: nx.is_graphical(l)
Out [12@0]: True

In [121]:

if you remember we had already seen this in our earlier video, 2, 2, 2 will give a triangle or a
C3, C3 means a cycle with 3 nodes that is the graph on this degree sequence 2, 2, 2.

Now let me check for some other sequence L equals, [am going to use the same alphabet L = 2,
2,2,1

(Refer Slide Time: 00:09)
References 1l

e e e ==

Erdos-Gallai
[EG1960@] _, [choudum1986] _

1y

Havel-Hakimi

[havel1955] _, [hakimil962]_, [CL1996]_
File: ~/anaconda3/1lib/python3.6/site-packages/net
Type: function

In [119]: 1=[2,2,2]

In [120]: nx.is_graphical(l)
Out[120]: True

In [121]: 1=[2,2,2,1]

(Refer Slide Time: 03:50)
let me check if this is graphical, what I'm going to do is NX is graphical you can always use
your up arrows on your keyboard and to get back your previous command whatever is relevant

there, nx.is_graphical L and it says false,
(Refer Slide Time: 04:06)

Havel-Hakimi '4

[havel1955]_, [hakimil962]_, [CL1996]_ iy
File: ~/anaconda3/lib/python3.6/site-packages/nety
Type: function

In [119]: 1=[2,2,2]

In [120]: nx.is_graphical(l)
Out[120]: True

In [121]: 1=[2,2,2,1]

In [122]: nx.is_graphical(1l)
Out[122]: False

In [123]: |

now my question will be you must be guessing why is it false? You must know the reason
because you have just 1 odd degree whereas it should be even number of odd degrees, right for
a sequence to be graphic, and hence it is showing false here.

Now let us check with the sequence which we had earlier taken up that is 5, 5, 5, oh sorry it's 5,
5and then 3, 3, 2, 2, 2,
(Refer Slide Time: 04:40)

Have l-Hakimi T

[havel1955] , [hakimil962]_, [CL1996] iy
File: ~/anaconda3/1lib/python3.6/site-packages/net\
Type: function
In [119]: 1=[2,2,2]

In [120]: nx.is_graphical(l)
Out[120]: True

In [121]: 1=[2,2,2,1]

In [122]: nx.is_graphical(l)
Out[122]: False

.In [123]: 1=45,5,3,3,2,2,2]

well the sequence we had already learnt it earlier, now let me check if its graphic, well, yes it is,
(Refer Slide Time: 04:52)

Out[124]

Out[122]:
In [1231:

In [124]:

In [125]:

In [119]: (=[2,2,2] “i
In [120]: nx.is_graphical(l) -
Out[120]: True

In 11211: \=12,%,2.1]

In [122]: nx.is_graphical(l)

False
1=[5,5,3,3,2,2,2]

nx.is_graphical(1l)
: True

we are able to verify our results now.

And the last one let me take it as L equals, well you can always use some other alphabet [am
just using L for convenience 5, 5, 5, 5, 2,2, 2

(Refer Slide Time: 05 09)

In [119]:

In [120]:
Out[l20]:

In [121]:

In [122]:
Out[122]:

In [123]:

In [124]:
Out[124]:

In [125]:

=12,2,2]

nx.is_graphical(l)
True

1=[2,2,2,1]

nx.is_graphical(l)
False

1=[5,5,3,3,;2,2,2]

nx.is_graphical(l)
True

1-§5,5,5,5,2,2,28

ity

this is my sequence now, let me check if its graphical nx.is_graphical of this sequence gives me

false,

(Refer Slide Time: 05 18)

In: 1321):

In [122]:
Out[122]:

In [123]:

In [124]:
Out[124]:

In [125]:

In [126]:
Out[126]:

tIn [127]:

=|Z;2,2,1]

nx.is_graphical(l)
False

1=15,5,3,3,;2,2;2]

nx.is_graphical(1l)
True

1=[5r5r5r5r2r212]

nx.1is_graphical(l)
False

1

iy

well, this was a challenge question for you guys if you remember in a video, and we had also
shown that it is not graphical, we had seen a beautiful video where we had shown the exact
reason as to why it is not graphical, if you remember we had seen that the last sequence had
some negative numbers as degrees and hence it is not graphical, with just this one liner is
graphical we could just play around and find out if the sequence is graphical or not.

Well do not assume that things can be this simple, several people are working behind the
convenience of this one-liner, what is that? Let us see,

(Refer Slide Time: 00:09)

L

& netwiriogituio . Il|

Dxgres Sequeres — Metwarkk 2.1 documerlation retworkas port mragrephical — Matworkl 110 doosTentatios

ity

Docs s Modub: code = netwarkxalgorithms graphical

Source code for networkx.algorithms.graphical

=" "Tagt esquerces For grapainess

from collecilons import defoultdict

impore heagq

impore AElworks B

aulbor__ = *wn®, joir['Aric Hagherg (hagsergdlonl.gev]’,

Pioter Smart (vwart@lanl.geme]’,

Osn Schult [ssctuliScolpate, sde}’
leel Hiller (jael. comwiller, resapechitpmad |, ool
Ben Edwards'

Brian Clotesws <briam.clotedwednlst, goes" 1)

all__ = ["ia_gr

flam

"Le_digraphicsl”,
*Le_walid_dezres_sequence_erdos_pallad’
'Lewalid degres sequence havel hakded',
'Ls vl il degres sequince', £

1

do you see this here, do you see this window? The source code for NetworkX algorithms, well
behind this one-liner we have the entire program written and hence this is making our life very
simple, this is the code written for finding if a degree sequence is graphical or not, do you see

this,

(Refer Slide Time: 06:40)

o rurtwiregidbio Il
retvorio al poeis rragrephecel — Mottt L10 doourerdatizs

Epr— ity

12 = § Rvne (=) ~(k-0) A - ‘Sem [5e0)~{R-1) 3R])

A FEFOSE I k 33 any bnden where “d k ‘peg &7 and the walwe ‘A §° is the

nusber of occurrences of | ind, The macime] sfrens fnden Ly called 13
e fem indes
This particular rearraspesent comes from the proof of Thegres 3 In [T]

Phie EF cosadlfion saps Chat for the sequosce d &

al

d s vmae () [dwtm
' i 0% gray 1 J-. A T & 1
el

[1]1 & Tripatha ard 5. Yijay. “A mtr on & theores of frdfa & fallm®,
mcrote Hathematics, M Bp, 41743 (M)}

[Z21 1.k, &fverowich and ¥ B, Sveravich, “Contributions to the theary
af graphic segeencey”, Discrete Pathemaiios, 185, po. J92-393 (1952)

TeLrssd] . [choudeshwes]

EFy
deax, Sain, daum,n nam dege = _banic_graphicel tesfaideg_ssguence]
wacept nu HeBmorkElnfess [bls

return

LF =3 o dsgminsn 3= (deaesdmin® i) & (dmaeideind)

FEtufn

well it's very huge, this is a documentation which people have done for this NetworkX you can
see that every such code used in NetworkX has a huge source code like this, so we must be
really happy and we must use the resources available to us in the package NetworkX.

Let us now go ahead and check a new graph, we have already seen what is a path graph, I
named it as P here, let me see how we can draw a path graph, P = nx.path graph and as earlier
we had given the number of vertices in brackets we should be mentioning the same here, path
graph and let me say 5 vertices

(Refer Slide Time: 07:33)

In [124]:
Out[l24]:

In [125]:

In [126]:
Out[126]:

In [127]:

In [128]:

nx.is_graphical(1l)
True

1=[5,5,5,5,2,;2,2]

nx.is_graphical(l)
False

P=nx.p%th_graph(5}

1

ily

and then we have to draw it, nx.draw I'm going to draw my graph P with labels, with labels as

true,

(Refer Slide Time: 07:54)

IM TIZ6T: X UTdwiP,WICT _(gueTS=I7

In [129]:

LY

do you see the graph here we've got a path graph on 5 vertices, this is just a random path graph.

Now we have already studied the concept of cut vertex and cut edge, if you remember a cut
vertex is a vertex on whose removal the graph becomes disconnected, right well, now let us see
how we can check that here, now let me make one point very clear as we have seen cut vertex it
is also called as articulation points, now this command nx.articulation_points in the bracketthe
graph P,

(Refer Slide Time: 08:46)

iy

In [129]: nx.articulation_points(P)|

now this is going to give me the cut vertices let us see.

Well do you see self-command coming as your output here some line generator object
articulation points act and some phrase,
(Refer Slide Time: 09:01)

iy

In [129]: nx.articulation_points(P)
Out [129]: <generator object articulation_points at @xalba

In [130]:
k
well this is not giving us the list of all the cut vertices, so what we have to do right now is list
and nx.articulation_points of P
(Refer Slide Time: 09:23)
1l

1y

In [129]: nx.articulation_points(P)
Out[129]: <generator object articulation_points at @xalba

In [130]: list[nx.articu{atinn_puinTE{P

| A ranmant e

please remember to give the syntax very accurately as a small error might lead up to you not
getting your output, so nx.articulation_points let us see if this gives us the list,

(Refer Slide Time: 09:40)
1

iy

In [129]:
Out[129]:

nx.articulation_points(P)
<generator object articulation_points at @xalba

In [130]:
Qut(l30]:

list(nx.articulation_points(P))
[3, 2, 1]

In [131]:

well 3, 2, 1, it says, so the vertex 3, vertex 2, vertex 1, these are our cut vertices in this graph.
Now let me just create another one say R = nx.path _graph or let me say some 12 vertices,
(Refer Slide Time: 10:04)

® Spyder [Pyan 38)
D.!_l*_@ "Bﬂi’g HI:EF".mx "" d= = Lbsersinicicang jJ

=3 Consoie 108 e
£ T Lk sd] !ji'u

In [126]:
Out[126]:

In [127]:
In [12B]:

In [129]:
Outl[129]:

In [138]:
Out[138]:

In [131]:

nx.1s_graphicalil)
False

P=nx.path_graph{5)

nx.drawl{P,with_labels=1}

nx.articulation_pointsi®)
<generator object articulation_points at @xalbafabad=

List(nx.articulation_points(P})
3, 2, 1l

R:nx.path_grapﬁlil?

A End-oi-imes LF

Sl

Ercoding: UTF-8 Lirei

it's a path graph on 12 vertices, nx.draw R with labels as true, well, do you see this graph here

(Refer Slide Time: 10:21)

In [13@]: list(nx.articulation_points(P))
Qutli3el: [3, 2, 1]

In [131]: R=nx.path_graph(12)

In [132]: nx.draw(R,with_labels=1)

9
o
o
R'.“-a___

.

In [133]:

Permissions: RW

i -

End-of-lini

it's a path graph on 12 vertices, let us just see what are the cut vertices, articulation points again
you got the same phrase here, now list will solve all the problem, but please note it has to be list
nx.articulation points of this graph R, if you give P you're going to again get the same list, so

your graph matters with whether it is P or R, so articulation points R will give me the list of all

the vertices
(Refer Slide Time: 10:58)

In [132]: nx.drawlR,with_labels=1)

H|
iy
S
L
o
‘.x\\
@
o o
In [133]: nx.articulation_points(P)
Out [133]: <generator object articulation_points at 8x11019299@=
In [134]: list(nx.articulation_points(R)})
Out([134]: [1e, 9, 8, 7, 6, 5, 4, 3, 2, 1]
In [135]: :
Permissions: RW End-cf-linag

which are cut vertices here.

Now what is the command for cut edges? It's a challenge for all of you to find it out all by

yourself, let me create a graph now,
(Refer Slide Time: 11:29)

& Spyter [Fywan 3.6) 1

)

Oens@me PGB HccES=n B OX FP &9 v 1]

| consale 1 | Ro
']

E =

[n [137]: G=nx.complete_graph(5)
[n [138]: H=nx.path_graph{a}
[n [139]: K=nx.disjoinmt_union(G,H)

[n [148]: nx.draw(K]

Yo

e —80—p

In [141]:

Permiselones RW End-of-ines; LF Encocing UTF-B Ling: B Coduming

observe these graphs here which have created, now let us check if the graph is connected or not,
if you remember we had showed that by connectedness there should be a path between every
pair of vertices A and B, now let us check using this command nx.is_connected, at which
graph? This graph,

(Refer Slide Time: 11:58)

In [137]: G=nx.complete_graph{5) II
In [138]: H=nx.path_graph(8) ity
In [139]: K=nx.disjoint_union{G,H)

In [148]: nx.draw(K)

2%

v i PN
e
°

In [141]: nx.1is_connected(K)

Drarrsiagioma- Biai Ead_al_linae i E Fremsdam HITE- @

so you must check if this graph is connected or not, how do we do that? Is connected is the
command for that, first you see this graph is not connected as we had seen for graphic is
graphic it is the same for connected, the command S is connected.

Now let me show you a star graph here you had already seen what is a star graph is, I had
earlier done it, a star graph looks something like this, don't worry much you will understand it
nx.star_graph or let me say 11 vertices

(Refer Slide Time: 12:37)

In [137]: G=nx.complete_graphi5s)]

In [139]: K=nx.disjoint_union{G,H)

In [148]: nx.draw(K)

W

._H_.___'“"t

In [141]: nx.is_connected(k)
Dut[141]: False

In [142]: S=nx.star_graph{11}|

]

In [138]: H=nx.path_graph{8) Hy

Fermissions: RW Ersd-of -lines: LF Encoding: UTF=8
now nx.draw S,

(Refer Slide Time: 12:47)

o
a’
$

In [141]: nx.is_connected(K)
Dut[141]: False

In [142]: S=nx,star_graph{11)

In [143]: nx.drawl5)

In [144]: |

Pasrminsnre: RW Fad-al-linag: 1E Frcadiner LITE-R

you see this is called as a star graph, okay, we have seen such a graph earlier, now let me ask if
is connected, S, well you must jump and tell me that yes it will be true, and the command is
verifying it,

I_-I-

(Refer Slide Time: 13:08)

- ———..____
*9 1
i iy
In [141]: nx.is;cnnnectedtﬂi
Dut[141]: False
In [142]: S=nx.star_graph{1l)
In [143]: nx.draw(5)
*
¢« .
%, i r
'.““HH N/ Wy
- % { o
T~ ,:‘x‘,. H_,«'___________'
e --_"" .
— /N e
1 o
L S/ | \\\
‘z/ I| ‘
[]

In [144]: nx.is_connected(S)

Out [144] :

In [145]:

True

Fermissions: W End-pf-lnes: LF Encoding: UTF=8

it's a peculiar property of the star graph you see there are 11 vertices outside on the periphery
and in the center is 1 vertex, whenever we give this command star graph in bracket the number
of vertices in NetworkX it means that the number of vertices inside bracket is actually those
which lie on the periphery these ones, this vertex which is in the center is not counted, and
hence here 11 means all the 11 vertices which are lying here, so this is a star graph, we have

seen that

a star graph is connected.

IIT MADRAS PRODUCTION

Founded by
Department of Higher Education
Ministry of Human Resources Development
Government of India

www.nptel.iitm.ac.in

Copyrights Reserved

http://www.nptel.iitm.ac.in/

