Performance Evaluation of Computer Systems
Prof. Krishna Moorthy Sivalingam
Department of Computer Science and Engineering

Indian institute of Technology, Madras

Lecture No. # 38

Discrete-Event Simulations - 111

(Refer Slide Time: 00:20)

pplications. Places System () [

View Co Help
Next (1ef2) 200
PROCESS *Token[d];
RESOURCE *Cpu;
RESOURCE *Disk[d]
STATREC *Delay[2];

int Number[9) = {0, 1,2,3,4,56,7 8);
double CpuServiceTime[2] = {10.0, 5.0};
double DiskMean = 30.0;

int Shape = 2

void TokenP ()

PROCESS *CpuAccess;

PROCESS *DiskAccess

PROCESS *NextToken;
ﬂt\i“ TokenNumber;
fﬂﬁl'_‘_ TimeStamp

=

MuUrugan P1

Good morning, welcome back. So, we will come back to our action based discrete
simulation programs. So, we saw two examples yesterday. The MM1 q system as well as
the Aloha protocol, as this is the two basic examples that we saw. With MM1, we saw the
infinite buffer, how use the resource object it is available in the axim, and with Aloha we
showed how we can access around buffers to add packets, to delete packets and then

process the packets based on that, both those buffers.

So, now will look at this set of examples; you have been looking at most of the course,
where there is a job, where is set of jobs that are sequencing to the CPU and then taking
or requesting service from one or more disks and then coming back to this CPU. So, your
typical pros processing execution right, unique process, any system process for that
matter right. Runs on the CPU, request some sort up input and output, then repeat is loop

endlessly, finishes this system right, and this example today we will look at the close

https://www.google.co.in/search?biw=1024&bih=629&q=discrete+advance&spell=1&sa=X&ei=AIPeUdCqBYmHrAfRxYCIBg&ved=0CCkQvwUoAA

queuing system, where there is a fixed number of jobs and circulation and we are seeing
this sharing system. So, want we want look at the throughput out of the system and terms
of... So, the number of jobs is fixed. Say, 10 or and then based on that, as this job
sequence to this CPU and disk; what is effective throughput of the system? In this sense
how many jobs per second can be completed? So, we have looked at techniques, mean
value analysis and related system right, to understand how this is this can be measured,
all this different performance metrics. But we has always we need away to compare the
results that may need envier of the techniques provide us, and simulation is good way of

validity in this certificate from the theoretical analysis.

So, in this example we have 9 processes that are 9 jobs, as per the other terminology
which is called as token; that which say as the process token right. So, this is 9 processes
that are running in the system and this is single CPU that is time shared between these 4
processes or 9 processes sorry. And then there is set of disks, there are 4 disks in the
system right which are shared among this 4 processes, 9 processes. Say, the processes
can request the CPU then, 1 of these 4 disks and then repeat this forever. That is the basic
queue; a close queuing network that you have seen before. The jobs are of two types; this
is only for, just show how we can actually make something more flexible and more

detailed in this simulation right.

So, we can see that the two types of jobs, one which have 10 units of time of CPU
execution; other is 5 units of CPU execution. So, there is are two classes of job that we
have in this system. And the time, that you request the disk right, the amount of the
average service time on each disk is defined to be 30 units right, 30 time units. So, that is
our basic system that we have here. And now, let us look at how we create the set of

processes that are needed to get this simulation going right.

(Refer Slide Time: 03:21)

if (arge > 1) TraceLevel = atoi (argv{l]);

for (i=0; i<=8; i++)
[
1
\-.w\le:] NewProcess ("TokenProcess", TokenP, DEFAULTSTK);
ActivitySetArg (T '|i|] (char *) \'&.\'.Huiu".ll]] IINKNOWN)
ActivitySchedTime (Token(i], 0.0, INDEPENDENT)
1

for (i=0; i<=3; i++))
Disk[i] = NewResource ("Disk®, FCFS, 1, 0.0);

_’D_L:G] NewStatree("Delay of token", POINT, MEANS, HIST, 10, 0.0, 400.0)

So, if we look at user main, so there we will create first the set of processes and the
corresponding set of resources that these processes are going to share. So, this is the first
loop. So, there are 9 processes. So, we create 9 processes; 1 for which with a
corresponding ID, we use a activity set or to let each process know what its ID is;
because that is needed later on a time. And then, we schedule this process to start right
away. So, there are 9 parallel processes running in the system. Each is going to execute

this token P, is the function that is going to be executed by each of those 9 processes.

So, that is now we established. So, we are now created 9 parallel processes for execution.
Now we create, we use this new resource, the resource object that is provided by action
to create the CPU, which is again simple, because we know that you simply request the
CPU. And the CPU is busy then, simply you have to wait for the CPU to become free
again. So, therefore, there is only one CPU and this is the first come, first serve with
priorities. The one of the different scheduling algorithms that is, disciplines by default

available action. So, we have now created this CPU, the second step.

Then, we go and create the disk. The disk is very simple; first come, first serve disk. That
is nothing special about it. There are 4 disks and each disk has corresponding resource
that is allocated for that. And now there are two types of statistics records; one for the
short jobs and one for the long jobs that is alright. So, that we have delay 0 and delay 1.
So, all the short CPU processes will go and update this short statistics required, short

CPU and other one the update the other statistics required. We also measured the CPU

utilization. That is, we collect statistics.

(Refer Slide Time: 05:03)

3 Applcations Paces system (g [

file Edt yiew Go pelp

Previoss 2of2) | 200%

oy L) VEWOLAIer] velay vl LURelD FULNL, NMEAND, HIOL, 1V, VU, $U.Uj
QueneCallectStats (Cpu, UTIL, MEANS, NOHIST, 0, 0.0, 0.0);
for (i=0; i<=3; i++)

QueueCollectStats (Disk[i], UTIL, MEANS, NOHIST, 0, 0.0, 0.0)

RandomInit()
SelectStream(5);

NewRepStatree{QueneStatPtr(Cpu, UTIL), 98, 0.01)

SetDeletions(1);
DriverAutoTerminate (50000.0,1000000.0);

StatrecReport(Delay[0])
StatrecReport(Delay[1])
StatrecReport(QueneStat Ptr(Cpu, UTIL));
Fuf (i=0; i<=3; i++)
{-";k‘i?%n|-Ih-|\--Lt[fJ_lu-le:nI"L(lllx-.[\j, UTIL))

1 _MPTEL

Muruganfra

We do not do that, then, this system will not collect statistics. We need to in work this.
We also collect statistics in terms of utilization for the 4 disks in the system. So, that is
are basic system done. Then we have this random minute and then notion of select
stream is mini simulated provided with default set of random number streams. Usually,
random numbers, the way is work you have a starting numbers, starting seed and then
after that it is deterministic. All the subsequent random numbers in the same seed are
going to follow this same pattern. It is usually some set of mode operations. And then,

you have repeated sequence.

After a long time, this sequence will repeat for any given stream. And because we want
to have some predictability in the output, rather than use some arbitrary random number
like time or some other entropy of the system; we try to have a set of say 16 random
number streams and we know that, but we want have at least 16 different combinations.
So, what will normally do is, run the same simulation for 10 or more different random
streams and then look at the main, the conference intervals based on that right. Here,
select stream simply means select the fifth random stream. It does mot matter what the
stream is; we just want to you use a particular random stream and there is a again one

more statistic point which a mode skip for now right.

So, then we have this driver auto terminate function which is the one that we talked
about in the last class were you, run up to 1 million time units if necessary. If
convergence takes place, based on the delay, then you simply stop the system from
simulation at that point of time. So that, once driver auto terminates finishes
automatically we know that, this is simulation is complete. Then we report all the
statistics for the 0 delay 1, the CPU utilization and for the dis-utilization. So, this is our
performance metric analysis. So, this is the basic system. Now, the 4 disks and the CPU
are in place and the 9 processes have started execution right. So, now, we need to go and
create the code for the token P the function that is going to be executed by each CPU

process right job and execution.

(Refer Slide Time: 06:54)

PROCESS *CpuAccess,
PROCESS *DiskAccess
PROCESS *NextToken;
int *TokenNumber,
double TimeStamp;

TokenNumber = (int *) ActivityGetArg(ME)
ProcessSetPriority (ME, (*TokenNumber>5)71.0:0.0)

do

1p = GetSimTime();
Jse(Cpu, Exponential(CpuServiceTime|(*TokenNumber>5)]));
se(Disk[Uniformlnt(0,3)], Erlang(DiskMean, Shape)
Statrecl ;u\‘\llljllr'lin“" TokenNumber -5l|. (GetSimTime() - TimeStamp), 1.0);

sehwhile (1> 0);

e
L MPTEL

Muruganra

So, thus, this process again as were saying before is going to be a endless right which of
endless while loop or a do while loop. In this case, that simply executes forever and
whenever this system simulation terminates; automatically this will just get terminated
right. So, anyway, so this again is to get a (()) every process, you need to find out which
when this token P is executing. You need to know what is the corresponding process
number and that is what is obtained from this activity get all, and then you set the
priority based on the cores, corresponding token number. And then if you look at the
actual code it is simply using the CPU for some exponential amount of service time
right. And again here if you look at it right for the token number is greater than 5 then,

you to have, array here right to CPU service time in array of 2 elements. If the token

number is greater than 5, then you will have mean service time of 5 units. If it is less than
5, mean service time is 10 units that is all. So, this is how your request the CPU. CPU is

busy, you have to wait until the CPU gets allocated.

So, then resource use is slightly different from what we saw before right. Previously, we
had a process which used activity scheduled resource. Here this simply says use the
resource. So, resource use will automatically queue the process when the process is
completed by the CPU, then it goes on to the next statement. So, this is actually a block
statement. So, you have to understand that right. This is this will block this particular
process until it gets selected by the CPU. So, there is a lot of fine detail which is
conveniently hidden by action, but for us logically it simply, use the CPU, use the disk
right. So, here again, I randomly choose 1 of the 4 disks and this is the service time; is
based on the Erlang distribution right which is something again predefined in the axiom
service. Let us We can look at the later if necessary, but instead of exponential service
time, it is now some Erlang service time based on this 2 parameter. This is the main and
if you look at Erlang there is also shape parameter right. This is A, B are the 2
parameters. Main is 1 and the shape parameter tells you how what will be the service

time. So, random variable defined by this Erlang distribution.

So, then resource you use for the CPU, resource use for the disk and then finally, when
we are done. So, | have used this CPU, I have used the disk and then I have simply
updated the delay statistics required right based on the time that before the process, the
current process executes forever. For in the current run, right for the current CPU dis-
quantum, I get the time before that particular run started. When the run finishes, this is
amount of time that a run of the disk on the CPU. And then, technically if you look at
this is probably some other job in the system, but just a same job in our simulation. We
are conveniently assuming it is a same job. In theory, it could be some other job right. It
is like 1 job finishes and some other job replaces that. Only difference is these 2 jobs had
a same parameter in terms of CPU execution time and disks services time. Therefore, it
is right conveniently replaced. That is why we consider the close queue in system. It is

how we do multi programming right.

So, we want to look at, if I run 10 jobs in the system what is effective throughput of the
system; if I run 5 job in the system, what is throughput of the system. And you want to

plot this graph in terms of number of jobs in the system verses the effective throughput

of the system right; as a number of job is very small, throughput will be small. But will
increase, the number of jobs to very large number, then what will happen is queuing will
happen right lots of queuing will build up; which means throughput will come down. So,
you want find out the optimal system operating point in terms of the number of jobs. It
can be active in the system. That is the degree of multi programming as far as if you see

that in over text books.

So, that is all and. So, this is the basic definition for the system. So, all the analysis will
(()) right. We can conveniently compare when m B a. In m b a, we did have a notion of 2
difference service times. You assume that all that service times are same on the CPU
here. I have this slide modification in terms of two difference service times depending on

the process itself.

So, now, let us see, we can actually get this to compile, not compile will simply run it,
there is a compile code that is available, so CPU disk, we do not have to define any
specific parameters right because everything is predefined. This number of processes,
service time all at is defined, and this is finally, what we get in the terms of the system

output right.

(Refer Slide Time: 11:15)

3 Aoplications Places System (g [l

Ple EdR Yiew Search Terminal Tabs Help

Terminal

Statistics Record Delay of token:
Number of samples = 33922, Max Value = 503.854, Min Value = 1.78917
Sampling interval = 599999, Sampling rate = ©.6565368
Mean = 106.148, Standard Deviation = 62.8961
Bin

0.600 (0.00%) |

0.000 4012.000 (11.83%) |**+**
49.000 9490.000 (27.98%) |*erresrersrrs
80.000 B624.000 (25.42%) |*+exrsxrarxs
120.060 5726.000 (16.88%) |*+rreer
160.000 3214.000 (0.47%) [*+**
200.000 1660.000 (4.80%) |**

240.000 724.000 (2.13%) |*

280.000 291.600 (0.86%) |

30,600 119.660 (0.35%) |

760800 41.600 (0.12%) |

HPTEL
0 I Terminal AuganPra JaEsam eaten Focsim man

So, what we, so this is the we simply output. This is the histogram right of the different
delays. So, this something that, the axiom also computes for you. It says that, between 0

and 40 right eleven percent of the process delays for the each process was eleven and

between 0 and 40 time units and 27 percent was in this time units and so on right. This
gives you the distribution right in terms of the number of samples that for with in this
different histogram. That is something in little more detail that, simply the mean value,
right the mean value we know it is simply 106 units of time, but the distribution is given
by this particular system. So, there are some jobs that take up to 360 units of time. So,
the mean is only representative right. You find that, there are very small numbers of jobs
that actually take 360. So, fairly long tail and, but about 25 percent of the jobs take right
somewhere between 80 and 40 units of time and so on. That is the histogram for this is
for the that is for longer job with service average service time of 10 units on the CPU, so

106 units of time.

(Refer Slide Time: 12:18)

3 Applications laces System (g [

Ple Gk Yiew Search Terminel Tags Help
Terminal

400.600 21.000 (©.06%)
End of Report

Statistics Record Delay of token:
Number of samples = 23897, Max Value = 469.494, Min Value = 0.766721
Sampling interval = 599969, Sampling rate = ©.0398304
Mean = 75.3401, Standard Deviation = 54.8441
Bin Value

. 6.000 (0.06%) |
0.000 7230.000 (30.20%) |*+++ssssssninis
40.000 BO4T.000 (33.67%) [*rerersrcrerieas
80.000 4312.000 (18,04%) |**#xxrrrx
120,600 2302.800 (9.63%) |*+**
160.000 1141.000 [4.77%) |**
200,000 531.600 (2.22%) |*

E’ﬁﬁgﬂ 189.000 (0.79%) |

For the shorter job, it is 75 units of time is the main that is what we observe here right,
and look at the number of samples and sampling interval and if you look at the max
value, in the worst case it is 470 and some cases it is because is exponential distributed

service time right. So, we get that point 76 is the minimum and maximum is about 470.

(Refer Slide Time: 12:37)

3 Agplications Places System (g [l FEEED Thabay 31, 1626AM 1| shrisheam *

fle [dit Yiew Search Terminal Tabs Help

Terminal
280.000 85,000 (©,36%)
320.000 36.000 (0.15%)
360.000 11.000 (0.05%)
400.000 4.000 (0.62%)

End of Report

Statistics Record CPU.util:
Number of intervals = 145265, Max Value = 1, Min Value = @
Sampling interval = 6000@8, Sampling rate = 0.24211
Mean = 0.765622, Standard Deviation = 0.42361

End of Report

Statistics Record Disk.util
Number of intervals = 28914, Max Value = 1, Min Value = @
Sampling interval = 666088, Sampling rate = ©.0481917
: ’_, L 0.716994, Standard Deviation = 0.45046

MuuganP1i yacsm alen phtsim man MM10b.£ pdf lsha.c pdf]

Then, we have a utilization of the CPU. So, this CPU utilization is 0.765, if you
remember m B a calculation, that is what we are trying to find right, utilization of the
CPU, so that 0.76 and disk utilization. This is the first disk right, disk number 1 disk
number 2 and so on. So, this is disk utilization are about 0.72, 0.72, 0.273, 0.7. So, there
are all roughly the same because we are uniformly, randomly selecting any one of this 4

disk for the system operation.

(Refer Slide Time: 13:05)

3 Agplications Places System (g [FEEED Th May 31, 1627 AM

Ple Edi yiew Search Jerminel Tabs Help
Terminal

End of Report

Statistics Record Disk.util
Number of intervals = 287685, Max Value = 1, Min Value = @
Sampling interval = 660088, Sampling rate = ©.0478433
Mean = 0,725056, Standard Deviation = 0.446486

End of Report

Statistics Record Disk.util
Number of intervals = 29858, Max Value = 1, Min Value = @
Sampling interval = 660088, Sampling rate = 0.0484317
Mean = 0.73068, Standard Deviation = 0.443607

End of Report

Stagfspite Record Disk.util:

" MuruganPia Jacsm axten yacsim. man MMIGh.cpdf aioha.c.pd|

So, that is essentially what we have. This is a way you can actually compare your m B a
results right and then validate it with help of this particular self —simulation. So, this can

be expanded.

We can write more complicated programs right, with the help of this with the basic
mechanism. So, all in all the basic queues are available. So, we can now construct larger
and larger queuing networks. We only saw single queue before. Now, this is a network of
queues right. So, I can actually feed packets from one queue to the other. So, that is the
concluding part of the axiom that we wanted to talk about. So, question on this on the

code analysis. No, questions, everything is clear?

(Refer Slide Time: 13:52)

J noplications Places systen (g [

Ple Edit Yiew Go Help

cpudisk.c
26.9.2007

tinclude <sim.h>
tinclude <math.h>

PROCESS *Token(9);
RESOURCE *Cpu;

RESOURCE *Disk[4]
FEATREC *Delay[2):

Now, we have seen right 3 sample programs and. So, if you are taking this class or going
through these lecturers on NPTEL, and then we also need to practice some of writing our
own programs right. It is not just to look at code and look at samples and so you may be
wanting write your own simulation program for whatever purpose, whatever be your
application. You can write your own, but just to get you started there are couple of other

programming assignments that we have developed.

(Refer Slide Time: 14:22)

3 noplications Paces System (g [

fle pdt Yiew Co Help

Consider the sample Yacsim program for M/M/1. Implement the generalized program to simulate the be
havior of the M/G/m/B queue. There will be two types of service times: (i) Exponential, (i) Specified by

the service time's pmf provided in an input file (format is listed below).

The metrics to measure are: average packet delay, variance of the packet delay, the average length of the
busy period. and packet drop (or blocking) probability (for B £ x).

The simulation’s terrgination condition: 93% confidence interval with width of 1,05 based on packet
delay, using the auto-termination library of YACSIM.

The inputs to your program will be specified in the command line, as follows:

Here, ~¢ indicates exponential service time for which —mu parameter provides the o value; g indi

cates Generalized service time distribution and the format of the ServiceTimeFile is:

So, we will take a quick look at those. We saw the M M 1 queue sample program. So, we
wanted to generalize this. So, you can take this session attempt right. This is part of the
assignment that was given for the c a 6 2 1 course, but you can essentially try to
generalize this to a M G m slash B queue, were the service time right can be either
exponential or it can be specified by some set of B m f right. The service time can be
actually given to an input rather than saying this service time is exponential. We can
actually define the problem distribution. The problem demand function for this service
times and then based on that you should be able to randomly generate for every packet
that arrives, the customer that arrives. You will determine this service time based on this

distribution.

(Refer Slide Time: 14:22)

3 Aoplications Paces System (g [FEED Th May 31, 1829 AM

fle R View Go elp

et 100l 19

T THEUTICS WO TOCUSUIE We, UVETHEE Packen UETy, VAl Taice Of e PUCKET UCIEY, Ve OVeTage [ghnon e

busy period, and packet drop (or blocking) probability (for B #).

The: simulation’s termination condition: 95% confidence interval with width of 0.05 based on packet
delay, using the auto-termination library of YACSIM.

Thhe inputs to your program will be specified in the command line, as follows:

Here, —¢ indicates exponential service time for which —mu parameter provides the ;¢ value; —g indi

cates Generalized service time distribution and the format of the Service TimeFile is

e The first line specifies the number of entries {four, in the example); The next few lines specify the service
%E time values and the corresponding probability. Note: if the sum of probabilities do not add up to one, the
% “; PrOZram can quit.
[

W W el Magan P pesim-exL

So, for example, if you look at this system here, we are saying there are 4 different
service times possible. So, with probability 0.3, which is the second parameter here the
service will time will be point 2 units, probability 0.35 the service time is point 4 units,
point 6 service time units and so on right. These are the all possible combination and if
you look at it, all the probability should add up to one right. This is the P m f for the
particular system. So, now we have to generate which is easy to do with help of the

uniform random distribution all that is sort of left unspecified.

(Refer Slide Time: 15:41)

 Applcations Places System g [l FEEED Thabay 31, 1G29AM *| shrishram %
I
fle (e yiew Go help

1 Queuing Simulator

Consider the sample Yacsim program for M/M/1. Implement the generalized program to simulate the be
havior of the M/G/m/B queue. There will be two types of service times: (i) Exponential, (ii) Specified by
the service time provided in an input file (format is listed below).

The metrics to measure are: average packet delay, vaniance of the packet delay, the average length of the
busy period, and packet drop (or blocking) probability (for B #).

The simulation’s termination condition: 95% confidence interval with width of 0.05 based on packet
delay, using the auto-termination library of YACSIM.

The inputs to your program will be specified in the command line, as follows:

Here, ¢ indicates exponential service time for which parameter provides the ;1 value; - g indi-

cates Gendralized service time distribution and the format of the ServiceTimeFile is:

HIPFE(L

W W el MaganF yucsimvest... | pacimma

But, we can convert this MM1 program into very generic m g m slash B program. So, to
get in to B, you will have to implement your own servers to bring in the finite buffers we
said, talked about; whether axiom provides finite buffers or not is not is clear. But we
can, very easily find out finite buffer capabilities and also multiple servers. Everything
we can handle by a writing this things ourselves. And in terms of measurements, the
metrics that we want to the measure from the system, average packet delay this is
something that we can very easily measure. We have seen examples for that and also
variance of the packet delay. It is now that you have all the samples you can easily

compute the variance.

We can, if you look at this result from (()) right variances for available mm1, but if you
want to do M G m slash B then, variances are not going to be easily available as a closet
formula. So, you have to closet formula. So, you have to restart something like
simulation to actually get the service variance time in this particular. We can also
measure the average length of busy period for the different servers, and also the packet
drop probability. Because when the buffers size is infinite, there is no packet drop. When
the buffer size is not infinite then, arriving packet will find the buffer full packets can get
dropped and those thing again and those things we can measure easily with help of
simulation. And likewise, if we look at mm1 B, there are results for the closed form
system results for the block and probability right. That is easily available, but for a more
generic system, it is not easily available. So, that way we need to resort to this simulation

as we have seen in this the particular case.

(Refer Slide Time: 17:10)

BufferSize value of ~1 indicates that & = of. In this case, if utilization, p = © > 1 (M/M/I) or
AE[s| > 1{MIG/1), the program can quit.

Experiment Set 1 For the M/M/m/B case, set i1 = 1 for all experiments. Vary m

10.2,0.4,06,08} and B € {m, 5, 10,00}

So, that is the basic set up and then there are right also itself variations in terms of
different number of servers, different arrival rates for the system as well as different

values for the buffer size.

So, these are all combinations that one can look at and there is also a slotted Aloha model
that is available, that was discussed in class, in earlier lecture. And what we can do is, we
can also try to, in part of that model, what we had the large transition matrix. So, we
defined that as the (()) where there are different states for the system in terms of the
number of packets that is being transmitted, number of packets in buffer, in back of in

and so on.

So, we had a fairly law complex state transition probability matrix. And so what did you
do with the state run transition probability matrix? This is a way of, you can actually
code that in, codifying math lab or mathematic or lab are any other package right. And
you can solve you can solve for that and get this steady state probabilities based on the
transition matrix. That is also very straight forward exercise, and so once we do that. So,
once we define the number of users in the system, the back of transition probability, the
new packet transition probability right, you can simply generate the transition matrix
based on those values. And then we can, if you remember that this from (()) textbook
that was discussed in the class. So, this is the way of trying to take a mathematical model

and actually getting numerical results for that right. Sometimes, numerical results have to

be a (()) at achieved by this means and anyway and as long as your matrix size is small,
you should be able to get the results in a reasonable amount of time. Otherwise, you have

to resort to some sort of approximation methods to get this.

(Refer Slide Time: 18:56)

) Applcations. Paces System g [l ™ U e ThuMayd 1G35AM Y shrisham

e [at View Co Help

Previows ot | 175%

For experiment set 2, there will be two graphs for each metric per service time distribution, one for

cach m value. The z-axis will be A, with lines for each value of

3. Source code and Technical Report for Sfotted Aloha user-based Markov Model: 15%. The report will
discuss the impact of F, on delay and throughput

The following optional assignments WILL NOT carry any extra credit.
4. (Optional) Empincally show that the departure process is Poisson with rate A for M/M/1 queue.

5. (Optional) Create a tandem of 2 queues and empirically show that the total response time is the sum

of the individual queue's response times

5. (Optional) The user transition queve-state based Markov Model for TDMA will be implemented
You can venfy whether the self-loop removal in state Sy will change the results; whether introducing
M = 1 wait states for the transition from So improved the performance, ete. You can also compare

the performance values to those achieved using the M/D/I queue (with vacations) model

7. (Optional) Implement a GUI for the Simulator program, where the user can specify the parameter

values (multiple A values at a time, etc.) and meirics of choice; the system will generate the corre-

e
4 ‘4'(\3 sponding graphs and display them on the screen or store in a file

W reeminal Mangant psimel yoLLm MMIGh.C sotacodl] & [T ave Cpudisa.c

This is the other experiment, that you could try, in order to right validate some of what
you seen in terms of the theoretical model, so we have looked at the extension from mm1
to m g m slash B as well as that theoretical slotted Aloha model. That we saw can also be
verified numerically with help of implementing this equation in Mat lab. So, that is 1
exercise that you can try out, as lot of other optional exercise also, which they have listed
here. I will talk about it right 1 or 2 of them. In class we had seen that, the departure
process from mm1 queue is also poison right. The arrival processes is poison that is an
input with rate lambda and we proved in class, departure is also poison with rate lambda.

Now, how do you verify that help of simulation right.

So, what you have to do is, you have to record the departure process. Every time a
process or a customer leaves the system you note the time, which we only right now
record the delays. We should now also record the instant of in time when those customers
are leaving the system right. So, you keep track of the inter departure times. So, you have
a set samples, set of sample inter departure times. Now, we will have to map that and
find out whether that actually follows the exponential process right, the inter departure

time is exponential. Then we know that, the departure process is also exponential. So, if

you look at Raj Jain’s book, there is a way of looking at the quantail distributions and
showing whether the sample values from the given system is matching an exponential

distribution or not. So, that is an exercise that is fairly easy to figure out.

And then we had also seen in class that I can concatenate the random of 2 queues; both
M M 1, where the first M M 1 queue finishes service, and feeds that to the second M M 1
queue. We saw that the delay in the system is the sum of the delay spent in each of the 2
queues, that is also that something that was the covered in class. Now, that is very easy to
verify the simulation right. That was, we said that, there are 2 queues with arrival rate
lambda and mul and mu2 as the corresponding departure rates. Then the total delay in

the system is, 1 by mul minus lambda plus 1 by mu2 minus lambda.

So, you can verify that. So, we can verify that also, with the help of creating at the
tandom of queues, where packets arrive to 1 queue when a packet departs the first queue,
it is simply gets joint at the next queue in the system. So, that is the simple tandom of
queues. It is a very simple example of queuing network. It is not real a network, but
anyway there are 2 more than 1 k, therefore, technically it becomes a network. So, there
are lots of other variation also that 1 can try out. So, only when you try these things, will
you get comfortable with the action and then try to use those in your corresponding
instruments of studies or project you are planning to use later on. So, that is one of the
programming assignments that you could try out. Now, there is other one which you will

discuss in about 5 minutes. Then we will start with it.

(Refer Slide Time: 21:38)

J Aoplications Places System (g [FEEED ThaMay 31, 16:36 AM

fle [dit Yiew Go Help

Next (o) | xom

Assignment 3: Due by Nov. 15, 2011, 11pm
Closed Queuing Network Simulator

This is an individual assignment. No Sharing of Code in any form: No Downloaded Code.

Implement a simulator program based on Yacsim/SimJava/SimPy 1o simulate the behavior of a closed
queucing network. Assume that all service times are Exponential. The metrics to measure are: average
packet delay (R(N)) and average system throughput (X V).

The inputs to your program will be specified in the command line, as follows:

queue -N number_of bs -f networkfile

Here, N is the number of jobs in the system; networkfile contains the Queueing Network specification
data as illustrated by the example below.

yotsimext poLsm MMIgh.L aloha.codl] | @ [T g

So, that was the open queuing right, open queuing system primarily. Now, we also
defined in other program for creating a close queuing network. it any We have seen lot of
examples in class like this CPU disk problem we saw earlier today. We can create more
complex network right and we can again create a set of queues and connect those queues
together, where the packets from 1 queue can reach some other queue based on some

problem distribution and so on and that was this assignment is all about.

(Refer Slide Time: 22:22)

3 oplications Places System (g [™ U de Tyl 1@37AM Y shrisheam
WEI
File gt Yiew Co telp
Hert (1ot | 20w :
IS 1S TONUWEU DY 01T TUNDET UF (UEUES TR IS YUEUE 15 COMIECIEU W, A1 U0e CONespOriunmg ru-

ability that a job completing service in device 1 will move to another device j. In the above example, a job
completing service in device | (say, CPU) will either return to this queue (this is a job “completion”) with
probability of 0.3; or move to one of two hard disks with corresponding probability,

Your program will implement these queues and simulate the transition of packets between the queues
First, create N jobs as specified in the command line and fill the device 1's queue with these jobs. Each
time a job visits a queue, the service time spent for the job will be exponentially distributed based on the
S; value for that queue. Whenever a job “completes”, record this as part of the throughput calculations;
the job continues to go through the queues indefinitely. Terminate the simulation with the condition: 95%
confidence interval with width of 0.05 based on R(N'), using the auto-termination library of YACSIM, with
batch size of 500

In addition, implement the MVA algonithm for this system based on Ch. 36.1 and compute the theoretical
throughput and response time values,

;}um‘ code for Simulator and MVA algorithm: If Source Code compiles correctly and runs correctly
15% of the erade will he nrovided

- it ALL fest cases

W Terminal Maugan psiment. Fatum ma MMIQh.C aioha.cpdl] | @ [Tem's die

So, you will create a set of queues and simulate the transition of packets between these
queues. When a packet finishes service in 1 queue, it automatically goes to 1 of the other
queues in the system. And the then, this again a close queuing system. So, we have a
number of jobs right and jobs in the system is predefined. And then we want to find out
throughput for the system right. So, we saw, we have seen x of n r of n in class, x of n is
the throughput; r of n is the corresponding response time. So, we can actually implement
this as well as, compare right, these results with the m b a algorithm. So, m b a algorithm
is defined, it is a very straight forward algorithm. It is a simply creative algorithm and
where you start from n equals 1, 2, 3 and so on up to n equals 10. Whatever be the
number of values that you have specified. So, you can compare your m b a algorithm,
with your algorithm, with this particular algorithm and we can basically construct any

network that you want to.

(Refer Slide Time: 23:15)

3 Applications Places System (g [} FEE Thabay 31, 1630AM (| shrishram %

Ple Edit Yiew Co pelp
et (1ofd) | 2

Lhe mputs 10 your program will be specified i the command [ing, as [ollows:

jueue -N number_of_jobs -f networkfile

Here, N is the number of jobs in the system; networkfile contains the Queueing Network specification
data as illustrated by the example below.

The first line specifies the number of queues (M) that will be numbered 1 through M; the next set of
integers specified the Our and the /n queue numbers, respectively for the Out-In link used in measuring
throughput. The next set of lines specify each queue’s parameters: i, 5;, i.e. index and average service time,
distributed exponentially; the next parameter indicates the number of servers at this queve.

This is followed by the number of queues that this queue is connected to; and the corresponding prob-

&
—g‘hﬂa@?&.ﬂ a job completing service in device i will move to another device j. In the above example, a job

Ing service in device | (say, CPU) will either return to this queue (this is a job “completion”) with

MMIQB.L aloha.cpdl] | @ [Tim's die tpudish.c

So, the specifications for the network creation are given in the example here right, where
you specify the number of queues. And which is going to be the in queue which is going
to be the out queue because in the case of close queuing system right, something (()) in

and the out queue 2 to find out in link and then we have passed that right.

So, we need to specify that for each queue in the system right, the corresponding
parameters, in terms of the index for that, average service time right, the number of

service of the queue and things like that. So, we can actually simulate not just single

server, you can simulate multiple servers at each queue. And then, right and then look at
this system performance based on that. So, this is also little bit more complex, but it is
doable and this combined with implementing m b a, will get a better will give a better
understanding of the performance that you can get with this system right. Otherwise, it is
all theory, on a paper and you would not really get the same value add or understanding
that you will get from implementing this system. So that, you can use them for later, of
your own exercises later on. So, that is the basic part about the discrete advance
simulation that I want to talk about. So, any questions? No questions, so we will stop
here for this part and then we re going to continue next on stochastic Petri nets which are

Petri nets in general and followed by stochastic Petri nets.

