
Performance Evaluation of Computer Systems

Prof. Krishna Moorthy Sivalingam

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Lecture No. # 19

Queuing Networks – II

(Refer Slide Time: 00:23)

So, now let us say visit our single tandem right, tandem of queues. So, tandem of queues is a

special case right. So, tandem of M M 1 queues used to do the evaluation, you can calculate

the number of customer in each of the queues, simply add them up right. So therefore, you

can evaluate all of them independently, that is why so called product form network right. So,

for this for example, if I have a queue right; so lambda equals10, and say mu equals 8, that

piece into second queue. I briefly gave you the derivation for E of n right, total number of

customers in the system. So, for this system what is E of r?

(No audio from 01:02 to 01:17)

So, how do you compute E of r? E of r is simply the resident, the response time in queue 1

plus the response time in queue 2 right. Therefore, this is simply 1 over or (()) or should had

this is10 about that, make this 5 right. So, your lambda should be less than both mu’s for the

system to be stable right. So, this is simply 1 over and whatever that what so. Say, 1 by 3 plus

1 by 2, 5 by 6. So, that is (()), and this applies to any series, we have several others, this is

the special case right. We are going through multiple servers in time.

(No audio from 02:10 to 02:19)

Now, everybody is awake; I should be awake. So, 4 by 3 that better. So, this is one particular

form of product form network. So, then there has been other words that people have been

slowly proving one class after the other, that such in such class of networks is also close

product form right. So, some of the classic result right, so products form networks.

(No audio from 02:57 to 03:09)

(Refer Slide Time: 03:00)

So, based on based on (()) theorem, we could show that tandem queues, we can evaluate; that

is a one special case. What do we have as set of network of queues right. We saw before open

and closed and so on right. What do we have set of M M 1 queues, where there is some

probability of moving from one queue to the other and so on, and it is an open queue right.

So, what Jacksons proved? This is Jackson’s theorems how that, any open queuing network

with exponential service times is also is the product form. So, that is one of the classic results

in the 60s and 70s, and then there is one more well few more results.

This is1963, if you are interested, and then there is another theorem which is by Gord on

Newelland the thing is this is, it can also be M server queue right open network. It is not just

M M 1(()) M M M writes this, even burs applies to M M M, which we did not talk about, but

burs also if you look at the system that is would be the output. So, Gordon Newell then

proved that, it is not just for open network; it is also for closed networks. But the same

condition, exponential service time is what they all initially worked upon. So, here they

showed that, any closed queuing network with a M server system and exponential service

time is a product form network.

So, this is the second result. Here, keen you can go back and check out some of those hold

paper system how they showed that; but both these cases, the restriction is there; the service

time is exponential. So, what is this enable? This enables us to essentially treat all the queues

independently, compute the service time and those that is what we will see. Next section will

be allowed to analyze queuing networks in try to find out waiting time and response time,

number of customers in the system, throughput all of that with the help of these results is

what we can right.

Sometimes we intuitively just say yeah you know just add up the numbers of a in a customer

reach of the queues and that is the total number of number is (()).But delay is for example,

we can intuitively makes some guesses, but it is buried to have some proven results (()).And

then there are another force another class I am sorry there is, this does not say anything about

the enable time; only the service time are exponential. But have to go back and look at the

original papers really also required, Poisson right in that particular case.

(Refer Slide Time: 06:59)

So then there are the one class called the BCMP class, which I am going to skip; because this

talks about the other types of queues also and other type of service disciplines right. For

example, processor sharing, I called it first first come first serve processor sharing and as well

as not rank last in last come first serve. So, about 3 or 4 particular types of service disciplines

besides the FCFS and some other restrictions on exponential is still there. But the type of

discipline that we can use besides FCFS, we can have another discipline too. So that was the

BCMP has and another set of conditions; any queuing network that satisfies this, so called

BCMP condition.

BCMP is named after the authors and if you really want, this Baskett, this will not be on the

(()) and this was in 1975. They showed for a larger class of networks that, this set of product

form solutions possible. Will it actually affects arrival time distribution? No, their response

time will change which LCFS versus FCFS, like processor sharing. If you look at processor

sharing, results are there in nothing (()) they are the mean time does not change. Because the

order of scheduling does not affect essentially are mean time, but variance in delay can be

different right.

So, first order moments might be the same, but the other moments will be (()) processor this

is M M 1 with processor sharing is the scheduling discipline. So, it is not whereas what we

talked about is FCFS right this is different FCFS, once you take a customer, you service the

customer completely. With processor sharing, you service each customer for a very tiny

duration like round robin right and then you keep going to the next customer. It is not even

round robin usually largely quantum; this is like a bit by bit rate. So, an extremely smalltime

is allocated to each customer you service and then go to the next customer, next customer,

and so on.

So, with that essentially, we will end up with same average time; mean time will not change,

but the other parameters will change. That is what, this (()) and those thing we will verify

with simulation. When (()) M M1 Q, I will give you for FCFS the same reaction code also

supports LCFS for example. What if we have LCFS as a queuing discipline? What will

happen? Then you can see LCFS does it lead to will always lead to, it can lead to salvation

right if it is last come first serve. (()) for ever sit there, until the queue get empty is going to

be sitting there.

But those things, we can play are all easily with with simulation and see, what is the stable

operation and condition. There will be second project, second assignment that will come out.

And then third assignment, the plan how is to have queuing networks right. First will be

simply set of queues with may be tandem queue also we can try out and then after that the

last assignment will be set of networks of queues by which time, I would have covered all the

open network and closed queuing networks; then we have all that will be done. So I can

actually, we will do the theory is there; also simulation to show that, whether the theory is

correct or not.

And the next thing with the simulation is that, I can say exponential only this formula

formula will work, but what if it is not exponential. So, you can simulate non exponential

service times and then compare those results with the base line exponential right. So, in

future you can always say exponential gives me one sort of trend settings or some sort of

lower bounds on the system asserts. So, this is the set of set of things that it will come. So,

what we look at next is. So, before I go to queuing networks, because I going to be couple of

weeks in which, there will be some classes I want to start queuing networks (()) if possible.

(()) So, now I promised some time back, we will look at this slotted aloha model as the

markov chain with the slightly different perspective; that is 1; that is pending. We also

yesterday also talk about semi markov model. So, we talk about markov, semi markov model

is just another extension and sometime this useful to just passed it you just cannot make

everything as an M M as the markov chain. So, you have this so called semi markov model.

(Refer Slide Time: 11:22)

So, now let us look at slotted aloha (No audio from 11:21 to 11:46) and the reason we do that

is, aloha is the very easy protocol to simulate in simulative (()). So, we will have some

simulation numbers and we always would like to know, right what the theoretical element is?

This, the theoretical element that we saw one is the g e power minus g, right which is the very

cross result. We saw the other model also; where you have the set of right states, then you

looking at the number of customer, number of users in the system. So, that is one way of

looking at modeling the system right.

In that system, the state was captured as the number of backlogged customer and the others

are un backlogged and you trying to see how the system transitions right. So, when if actually

attempted the problem on the sample assignment, try to build it and right you could have

seen. Now, that it is not ok. We will look at different model and then see whether those; this is

actually implementable also easily. When when as part of your one of the assignments, will

include aloha; aloha code is there; already I have written that. It made the bugs in it. So, I will

expect you to fix it; the code is twenty years old. So, this model that I am going to talk about

is something that was my first markov model.

So, you guys are struck with it; so we have to see what this markov model. But any way, I

think it is still useful and we can verify whether my model is correct or not. So now, this

model for aloha is going to be based on a single users percept. So, there is a notion of a

channel right. So, there is the channel common channel that is being shared there is a channel

and then like before we have a set of users. So, this assumes that, this represent the NIC card

of every user right. So, NIC card; this is your right MAC card that is implementing aloha. So,

I will model that as a server and then the MAC card is getting packets from which layer? It

can be from both layers.

So, let us assume that, the packet is coming from the I p layer that, whatever comes from the

physical layer simply goes to the I p layer. So therefore, there is not much of sharing is there

right. Sharing is needed only, when you want to send the packet. So therefore, these are

packets coming from the I p layer. So, packets are coming from the I p layer and lets what

would I use here lambda. So, a lambda packet per second is the arrival rate. So, there has

every is… So, now in the simulator you can imagine, I can simply build right. One process or

one event, group of event are handling particular user and then simply replicate that as many

terms you want thousand users, you can replicate by thousand right.

I can essentially create copies of it. So, now the modeling is based on the user perspective not

in the system perspective. So, what are the states that each user is going to spend? It goes

through different states. So, to actually model that we had one restriction right, so this is so

called 2 Buffer model which means, there can be one packet trying to sent to be sent and then

1 that is queued. The packets are arrived to the queue at most be this case only 2 right. We

can generalize this to be buffer model; if you want same model can be expanded, but let us

we get 2-buffer model because it is easy to deal with. So, let us define few parameters that we

will need here. (No audio from 15:36 to 15:46) There are 5 states.

(Refer Slide Time: 15:51)

So, S naught represent the state that, this is modeling the transmitter of every user; this is one

particular result that, M modeling right. So, this is modeling that the user transmitter is idle.

Basically, there are no packets to be sent in the queue right. This is one particular queue is the

queue that I am looking at no packets in the queue. Therefore, the transmitter is idle. The

transmitter in aloha will be in 2 possible states essentially right. So, one is when a packet

arrives newly to the queue always try to send; therefore, during transmitting state and at end

of this… this is slotted aloha right.

So therefore, this is a DTMC one slot is one packet. So, I have a packet the beginning of the

slot, I will the send the packet. At the end of the slot, either there is a collision or there is

success right. If there is a collision, then I go on to back off state; that is the definition of

aloha and in back off what do we do? We solve last time back off probability p b; what do we

had a and b last time. So, if you are in back off, there are different ways you can come out of

back off right. One is to simply schedule treat that as the uniform interval; uniform between 0

and 20right.Any time between the next 1 and20 slots, transmitter will wake up and try to

retransmit the packet that is one model of the back off handling back off.

Otherwise you simply have this probability p b wherein, every slot you will keep flipping the

coin like geometric process right; keep the ping and then decide to send or not or (())

geometric. So, that we are assumed the second one wherein, every slot there is the probability

p b of trying to resend; with 1 minus p b you will not resend, you simply stay (()). So, S 1

transmitter is sending a packet and there is no buffered packet. So, there is occupancy of this

queue is simply 1 and then the parallel state is possible that right.

I tried I failed and then between another packet, k minute got queued and only 2 packets can

be in the queue right; third packet comes simply get shocked. And here, this is the situation

where I have a packet queued and also I am trying to transmit a packet. (No audio from 17:53

t0 18:05)So, this no buffer I mean no additional packet is buffered right. So, there is all there

is one packet in the buffer, which is the one that I am trying to send. So, either transmit in

every slot, the transmitter can be none of these state. Either sending or simply sitting in back

off, even though there is a packet to be send or an idle because there is no packet to be sent.

So, this is S 3 is a transmitter is in back off state with no additional packet buffered and S 4 is

ditto as S 3, except there is one packet buffered (No audio from 18:53 to 19:16)yeah total

queue. We are assuming queue length to be 2. Yes, the total buffer capacity in MAC layer

card is only 2; it can be, it can store 2 packets. So, one under transmission; second one is

simply waiting for service for the first 20 (()) and it simply first come first serve. So, until

the packet and the head of the queue finishes successfully, the second packet cannot be send,

(()) one additional packet yeah; you already back off statement, so the total of 2 slots; so I

am in back off.

 Let us say only one packet is come; one packet is sitting in the queue and I am try to send it;

it failed and no other packet has come for a long time. Therefore, that is one S 3 is; but in the

time that I am waiting, because the back back off I try to send in a very starting probability p

b. So, some slot I will never try to send at all, that time one more packet comes then the

occupancy of the queue will be 2.So, we are assuming that before I am talk about in S.

See S 4 state will happen; this is the sequence, you are in S naught right I will draw that

picture then let us let us look at the transition diagram, the state vision; then you will able to

figure this. So any questions on… This is the state I am sending, no no no other packet is

waiting; I am sending, but one packet is waiting and I am not sending in back off, either there

is a packet or there is no packet. Yes for buffer is full; yeah even S 2 also buffer is full; S 2

and S 4 all slots are used. S 1, S 3 1 slot is free for single packet and we assume that we will

make some assumptions right. So, we have makes some definition.

(Refer Slide Time: 21:07)

So, beta is the probability that at least one packet is generated; this is for at a given user in

one slot. So, if the queue is empty, we will have to make a small assumption. We can relax

that is really want to which we will gives slightly more improved performance. We will

assume that in one slot only, one packet can be generated; no more than one. If you if you

really want, we change this model to simply do that also. We can do that will make the

exercise right change the (()) whether it make that behalf an improvement. But sometimes

these things will make difference; sometimes it might not. If I do not assume, depends on the

lambda value I am looking at as well as your time slot right.

If time slot is very large, then saying that only one packet will come at time slot is little bit of

an approximation is possible that, more than one will come. But we will just assume that at

most one packet is going to come; this is all per user. This entire model is on user perspective.

In one slot yeah this is per user right. So, what is this going to be? Given that the arrivals are

right. So, we have Poisson I did not say that, but I am saying this now. Poisson arrival rate,

the lambda which I mentioned earlier; this is per user; not the system byte.

So, what is this probability of no packet generated in Poisson is e power minus lambda,

because every lambda in t equals 1 here. So, this is simply 1 minus and I will call beta to be 1

minus beta bar. I have to simply call the e minus e power minus lambda anyway I have to. So,

what other parameters do we need to know? So, beta has the probability of one packet at least

one packet coming any to another probability of success right. Probability of when I send the

packet, what is the probability of success? It can be 1,if there is no other user in the system,

but it hold not be 1. It will be some smaller number, if there are several users in the system

that we will have to figure outright.

Right If there are n user trying to compete and what is the probability right? That I will

succeed; that will be actually a binomial right. We will come to that later. So, P s is the

probability of successful transmission that will depend upon how many users are there in the

system. But simply assume that there is some variable called P s. Let we can compute that

will be a single value, which is steady state analysis and P b is the probability of the back off

probability or probability of transmitting while in a back off state. So, within if I am in back

off I will flip a coin with probability P b. I will try to resend and1 minus P b I will stay in the

same state.

P b can be 1, if you want that becomes very aggressive. If P b equals 1 what will happen? 4

users collide; everybody then keeps on trying in the next slot nothing is going to go through.

So, P b has to be relatively small. But P b is very small, then your 1 over P b is that number of

slots you have to wait before actually will try to send. The expected number of slots before

actually be retransmitting will be very large if P b is small. Because only small and only is the

probability P b say, point 0 0 1 will take1000 slots before even try retransmitting. There is

extremely passive, they are the extremely aggressive. So, this is the design ratio; what value

of P b is going to be…

So, that we will have to assume is given to us. In a real system P b is actually not static. It is

dynamic. You look at that the system, how many collisions you have and try to adjust back

off probability based on that. In this analysis, I can only assume fixed P b. When I go if I go

to dynamic P b, my model is simply collapse. So therefore, I have to deal deal with it, but in

my simulation I can do whatever I want to, and then see whether varying the back off

probability makes big difference or not dynamically. So, this is our setup so far. Now, we will

come to the picture.

(Refer Slide Time: 26:15)

So, we are in state S naught; S naught is the idle state. So, the system will start in state S

naught, and then with there are 2 events that can happen when I am in idle state. Again this is

the slotted aloha system. So, all event changes take place only in the in a beginning of a slot,

so we do not change state in between; that is again convenient assumption. So, if I am in idle

of the beginning of the slot; in the next slot beginning I would be either having a packet to

send; if some packet had come in this one plot or I will have no packet to send. So, we are

this is beta bar. This is beta.

So, this is this assumption making right I could have made this as no packet is e power minus

lambda; one packet is e power lambda lambda e power minus lambda; more than one packet

is 1 minus these 2 things and then sent to S 2 also. I get S 0 to S 2 to give little bit more

accuracy but I am just making that simplification. So, either only one packet will get

generated and simply gets in to the queue. So, now how will we let us say draw this other

picture also; I will draw S 2 here. (No audio from 27:46 to 27:58) So, from S 1, S 1 I have a

packet to send.

So, beginning of a slot there is the packet to be sent. What will be the next possible state?

What other transition? And what are the state transition probabilities? S1 to I can go from S

1,ifpacket is successful and no packet is generated I go back to S naught. So, let us deal with

that first. So, what is the probability for that occurring? Beta bar right; packet successful and

no packet generated. So, I go to P s in to beta bar I self flow part right if I successfully sent

this packet and a new packet is generated I will stay in the same state (No audio from 28:49

to 29:03)then what will can I happen?

Can I go from S 1 to S 2?I cannot go from S 1 to S 2;because S 1 to S 2 within S 2 there is a

packet queued. But I think only one packet can come right; I really cannot do that. From S 1,

I can go to S 3. So, to go from S 1 to S 3 it means that, the packet was not successful 1 minus

and no new packet was generated. So therefore, beta bar and I have one more state; possible

that I tried to send, it failed and between another packet also came.(No audio from 29:41 to

29:54) So, that say set of transitions, then some of S 2;let we go to S 3 next. So, I was

unsuccessful in the previous slot and no packet right.

From S 3, what are the transitions? I will go from S 3 to S 3, which means I did not tried back

retransmission and no new packet right. So, this is 1 minus P b in to back off probability. P b

is may retransmission probability or will call back probability of retransmission and tried and

failed. No, I only move from back off to transmit state; this whole, the entire state was in

back off; next state, I am going in to the transmit state. So, that will be here. So, this is P b

and no packet was generated. Because I am now in transmit mode at the beginning of the slot,

but there was no packet in the previous slot. Then we can go from S 3 to S 2.

(No audio from 31:19 to 31:29) I go to S naught with P b in to beta bar, because I was

successfully transmitted backlogged packet. No, you are not successful; you are only moving

to transmit state. At the beginning of the next slot, you are in transmit state; you did not send

right. So, I was in back off at beginning of the slot; at the end of the slot, did I chose to go to

transmit state or not and the next slot only, I will send right. So, this entire slot was and here,

again I made to sent right. I am trying to send in the next slot and there was a packet

generated. (No audio from 32:07 to 32:17) So, have I satisfied all transitions? S 3 not yet; So,

S 3 I can stay, I can go to S 4.

If I did not, if I desire it not to retransmit the next slot and one packet get, so alright. So, then

in S 4, I can what are the transitions possible at S 4?S 4 in whatever new packets arriving

makes no difference; everything is going to be draft. So, either I tried to sent or I do not try;

either try retransmission or try to transmission. So therefore, this is simply going to be 1

minus P b. P b alright to transition S 2 I am ready to I am trying to attempting in this

particular slot; either I am successful or not successful. New packets do not make any

difference, because queue is already full. So, this is going to be if I do not succeed, 1 minus P

s and if I succeed, P s.

If I succeed, I go back to transmission with 1 packet right one packet to be sent. I have 2

packets, that is that is no room to store. Say I am only 2 buffers are there right. So, I am at the

top of the packet I am trying; in between in that one slot if anything happen; if new packet

comes, it simply going to get draft. Therefore, this is no room for store. I think that is

essentially right know what do we do? So, we can now try; basically, you want to find out

throughput, delay, and things like that. For a particular user, but before that we need to know

the steady state probabilities of each state right.

(Refer Slide Time: 34:14)

So, let us say… So, what we can do is we can solve V P equals V, sigma V i equals 1 to get

the… only one catch though P b is specified as an input, lambda is given as the input. These

only two things we needed; this P as is actually a system dependent. So, P s will actually

depends upon the probability of success. P s Ps actually depend upon the number of users try

to compete in the system. So, how do we model that, to be a some of what is happening is,

now I am having a iterative process right. I can compute the P s but unfortunately do not

know P s and the P s depends upon the P actually.

So, what is the probability that a node will attempt to send a packet in a slot will called is as

sigma. For a node for a node to be in transmit state, what is the probability? That it is either in

P 1or P 2 right. Say, if I know P 1 and P 2, I can simply say that, I am in transmit state with

the probability, sigma. One of those two states, I am sending the packet. Now, there are n

users sending the packet right with total of let us say n users are there in the system. Each of

them assume that, the system is completely (()) every node is behaving identically. So, in the

longer they will all have the same piece.

So, if I have n users each of them with probability sigma are being in a transmit state in every

slot, then what is the probability of success? Simply n choose 1right or where will it is that

there is only one state for one process or one user in this transmit state; others are all in the

non transmit state right. So, that is our binomial basically. So therefore, I can approximate.

(No audio from 36:38 to 36:48)

 This is where, you know will always have confusion, whether this extra sigma is needed or

not. Given that, I am in the transmit state. I want everybody else to be quiet; only then I will

succeed, and given that there are M users in the system.

I will succeed if nobody else if you going to fight with me whether this sigma it should be

there or not yeah yeah, so this this sigma back (()). In fact, more complicated expression but

this is the simplest one. 1 minus sigma M into minus 1 actually will take should take care, but

adding that sigma did not work; I have tried it. So, if you want you can; because this is

assuming that I will get that this one user in transmit state. What is the probability that, I will

be successful is nobody else. Therefore, only other M minus 1 user should be not in the

transmit state right any other state.

See, this is our, these are the two transmit states right. If a user is in S 1 or S 2, it means user

is sending and the probability of that, where P our P of 1, P of 2 is the steady state probability

of being in state 1 and state 2.Let us yeah we said V 1 and V 2 and I have said P 1 and P 2.

So, this technically is V 1 and V 2, probability of being in state 1 or state 2. So now, I have P

s equals this. So, now I have a set of markov equation which I can simply plug in to right. In

fact, if you those days I used actually, manually solved right I will write over these all

expressions like you do in your test and then solve it.

We did not did not had mat lab mathematical at that time which I did not really used. I simply

solve this equation, then plug those equations in to only the equation (()). But any way, I can

come up with the transition metrics, then I have to initially start with some value for P s right.

So, the way to solve is(No audio from 38:58 to 39:07) right Assume P s equals some small

value 0.001,I have forget what I used and then solve because I am assuming taking some

right then solve for the vector V and P s and then repeat until convergence. We have to have

some condition for convergence saying that, ultimately sigma converges to some small right.

Sigma 1 in the first iteration, if I get sigma equals this; the second iteration we get different

sigma, then the difference should be some small epsilon right. So, repeat until convergence

on some parameter, whether it is P s or sigma; whatever it is that is you want. Once you find

that, there is no change in the transition probability and the way that steady state

probabilities, then you can stop right repeat right. So, you need P s to start to compute sigma,

then you use the sigma to recompute the P s and then do this forever. And what we found is

about 50 (()), in most of the cases converge.

But the lambda is very large; of course, it will not converge; lambda will actually probably it

still whatever it is lambda is larger going to go to (()) 0.36 or something like that. (No audio

from 40:30 to 40:48) So, then now I have the steady state probability of being in the nature

now what is the throughput of the system? What is the throughput of the system from the user

perspective? Successfully transmitted over time slot; so per time per users probability of

success is sigma right. So, will be simply sigma sigma into M sigma in to M. So, each user

throughput will be a share right, this only per user throughput that M c.

So, it is to be users total system throughput will be sigma into M, because sigma is the

probability of sorry P s into M. P s is the probability of successful transmit not sigma right. P

s is the probability that, I will successfully transmit and it is going to be Min to P s, yeah

some approximations are there, we will see. If not think before next class, because I am going

to stop in a couple of minutes and then delay how you do find delay? P sin to M, why is it P s

in to M? So, the probability of a node successfully transmitting in a slot is P s; that is my

throughput. But now throughput is P m P s right.

P s also the per not through put; P s probability of successful transmissions; yeah given that I

am in sigma into P s in to M. Then I should succeed yeah. So, that is why that again that one

sigma is there right. sigma into P s, probability of being in a transmission state and

probability; so sigma into P s. That into M will come, because I am looking at the system

throughput as such. Because each user throughput will be ok that we will come back and

continue. And delay per user is easy to find out, how I can compute E of n right; (()) reward

function business.

I simply say the number of customer here is 0; number of packet say here 0; this is 1; this is

1; 2 and 2; look at the probabilities right. I can compute the average buffer occupancy of the

queue in the system by using reward function. Once you know the P steady state

probabilities, I can compute the average number of packets in this queue that divided by the

lambda is my delay. So, this way I can compute delay and throughput in the system. I will

continue on specifics of that in the next class, but that is the basic principle right.

(Refer Slide Time: 43:27)

So, now If I give you as aloha system with M users and lambda and P b simply right crunch

out this P s to be and so on. Write an iterative equation that will simply solve this. You can

write it and see an interface to something else or actually given even solve the closed form

equations very simply, if you want to… We will simply have a set of closed form expressions

that you will solve with then give you all the values. In this system the user will wait at least

one slot before retransmitting. In this particular system at the end of… No I… Then I have to

wait one slot yeah before retransmission. Yes, correct.

But in real system you can retransmit in immediate next one yeah yeah you can. So, then if I

really want to include that, then my S1 from S 3 to S naught I can go. If I do not want to wait

that one slot yeah these are some of the approximations that you try to door in which case S 3

will also be a transmit state that right. The S 3 will If I allow S 3 transmission in S 3, then I

will have to change my parameters my transmission probabilities accordingly, but S 3 will

then also be a transmit state.

Then, sigma will be equal to whatever P 1 plus S 2 right. V 1 plus V 2 plus V 3 plus V 4if all

of them I can have transmissions. So that one extra slot will (()). So, this is using plain

Markov right. Now, what you find is that just 2 minutes I will say and then stop. The self

loops are here; this is the right. So, the I can replace all the self loops by simply stating that

rather have this system move on a slot by slot basis, I can have the time spent in each state to

be n th…This case will be exponential right, I can simply replace this self loop, and replace

this beta by 1. I will come back on this. They have your (()) one problem will we can do this

approximation with semi markov.

I will come back in deal with semi markov separately. I can replace self loop basically with

the switch on time of each state. I do not need to have right, I do not have to have this extra

self loop. I can remove the self loops, and then instead I will say S naught, the time spent in S

naught is basically 1over beta right. And then with that I can all the self loop can replace just

corresponding switch on time in each of the state. Then I can again re compute this. Then it

becomes the semi Markov model, which will come back in deal with on Friday.

