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Before you look at MG1, let us look at another design problem, right. So, you are

currently operating a system let say, it is a packet queue, this is 100 mbps and then,

you  find  that  the  queue  length  are  large  and you know that  the  system capacity

definitely has to be improved because the arrival rate has increased. So, you have two

choices. 

You can of course, simply make this 200 mbps link that we saw last time, but can also

add, it is impossible to go by a 200 mbps link. Only fix capacity is available. You

simply add by one more link of 100 mbps. So, I am adding one more server keeping

my queue constant or this is my lambda. Let us say that my lambda is splitting by

whatever means into two streams. So, you have two separate queues. So, packets are

split at the entrance into two separate queues. This is at banks also. In India we never

know what kind of queuing system is used. You go to the bank and you will have one



queue,  multiple  queues.  The  guy  will  be  shouting,  please  follow  one  queue,  but

always a shortest queue we will just simply go and stand. So, we tried moral that one

to multiple queue where people always find shortest queue to join. 

So, what is the effective performance of that system? It is basically balanced at some

point everything. Shortest queue will grow longer that you will see. This book does

not have that example where customer choices are based on the queue length. So, this

is called arrivals of discouragement, that is, we discourage arrivals based on the queue

length. Which of these two would be better? This is another question. Separate input

card input or separate at the service time. 

(No audio available: 2:28-2:34)

The variance of wide variance will be more. Just mean will be the same or mean will

be expected to be the same, but the variance will be different between the two. Any

other it  is not intuitive,  but just  (( )) have a single queue or two separate queues.

Single queue. We just want a better performance in terms of response. That is the user

only who cares about that. You are saying one counter is not enough. So, the banker

says ok I will put two counters. Then, the question is today having a single, this is

resume that  is  infinity. This  is  both  m/m/1.  It  is  either  m/m/2 or  2  m/m/1s.  Two

separate queues are better? One queue is better, ok. Some of you have seen that, some

of you have not seen that I am trying to guess. I will go through that and then, we will

search for the intuition as to why one system is better than the other.



(Refer Slide Time: 03:56)

For now, we simply let us say lambda equals 50 mbps. 

(No audio available: 4:00-4:08)

Yes, first I want to get numbers. Then, once we see that you know numbers tell us this

is happening, then we can then should be able (( )) now undivided. Those who have

not seen the problem or not sure which way to go, then you should give them the first

look at the number. Then, see why should be better than the other. 

So, the m/m/2 system this is row equals 0.5. So, we did this already yesterday on

Wednesday. So, e f or p, everything was 1 by 3, right. P naught was 1 by 3, this thing

was 1 by 3, E nq also was. Its rows was 0.5, sorry we should make this equals 100,

right. Fine we will give the same example 100 by 200. So, row is 100 by 200. That

equals 0.5 for that same area 0.5. So, you have n q is this and then, what was E f, what

will be E of r? 13.33. What did we say? Milliseconds, nano seconds, will be micro

seconds or I did 100 mbps. So, will be as just milliseconds at 100 mbps link and I am

already looking at per bit. I am not talking about packet and all. So, 1 bit takes 1 nano

seconds. So, yeah 1 bit takes sorry 10 nano seconds. So, this is looking per bit as a

delay. So, it should be nano seconds. This lambda is 100 times 10 power 6 enforce.

The nano second is correct. 



Let us get conclusive answer on this. Some people still in how can when I am sending

100 mbps, how can 1 bit take anything more than 10 nano seconds? That is your one

move take 10 nano seconds and then, my 2 m/m/1 once. Now, my lambda prime is 50,

mu is 100 and row is, this is called dash dash. So, to differentiate the two rows is

basically also 0.5 row dash. So, E of r is 1 over 50. Actually, we have micro seconds

because 50-50 times 10 power 6, then 10 power 6 goes up and then, thousand, no

sorry.  It  is  the  multiplying  thousand  above.  So,  these  two  numbers,  agree  with

everyone? All right. Second number is it compute 1 over 50 into 10 power 6 (( )) 20

nano seconds. Therefore, this also (( )), but it is less. Those who voted for m/m/2 can

now feel better, but your theory, that mean will be the same. Why? Because if you

will look at m/m/1, look at Marco chain itself, the return rates are faster for at least

some of the state return rates try 2 mu for all state. Not all, but the first everything is

returning at 2 mu. Here, it is always returning mu. Only thing is my lambda is reduced

to lambda by 2. 

So, therefore, customers, the serve effective serve rate is better in the first system,

m/m/2 system. It is 2 mu, that is one and the second intuition that we have tried to

convince ourselves before is that it is possible that there will be a yeah that server is,

that particular queues are empty and the server is free and there waiting customers in

the other queue based on the randomness of arrivals. Therefore, one server might not

be used for certain duration, that p naught, whereas in the other case, the server will

never be empty as long as there is a customer waiting to be served. The single queue,

the server will never be ideal as long as the queue is not ideal. That is another reason

why you will find that the first system will especially perform well. Single queue is

always better. 

M/m/2 will be 2 mu and the second case, it is mu, but your rate is the, arrival rate is

lambda by 2. So, it, but explanation is that the possibility of waiting. No, actually that

single system m/m/1 with 100 mbps will be with 200 mbps will be the best. This will

be  better  than yeah yeah definitely yeah yeah yeah .  This  will  these two will  be

definitely better than that. Yeah, these two will be an improvement. So, here if I will

give to an 100, what is going to happen? This is an unstable system. I cannot operate

100 mbps with the first,  with the basic system. This I cannot. Lambda equals 100

means system is unstable. This is one of the reasons why we want to increase the



capacity because lambda is approaching so close to mu that the lines are getting very

long. That is why you want to read the sentence. Therefore,  these two will be an

improvement. 

Then, the other problem we saw the day was is in m/m/1 queue with 2 mu better.

Finally, that we show that ultimately what is the best way do this to double the server

capacity.

(Refer Slide Time: 11:13)

If you remember the companion problem was. I said this is 2 mu. If you are there is an

option to actually double line capacity or double the server capacity, then stick to the

single queue. This is what to (( )) you in various system we look at the network, then

the  system  application.  If  you  look  at  CPU,  where  you  go  two  CPU,  servicing

processes are build of single CPU or double clock cycle or whatever the queue try to

do so, but it is always impossible to simply double the clock speed. You have to look

at two courts and then, you look at whether you want to think of as a processor. This

processor threads being executed by the CPU. This is the ready queue and (( )) have

one common ready queue. Then, have two separate ready queues one for each core. 

No no no no this is a random this is purely probabilistic.



(Refer Slide Time: 12:34)

Yeah, this  does not depend upon the queues.  Yeah this  is  not  depended on queue

length. Let go and see if you consider the queue length, yeah this is random. That is

why this is randomly selected or uniformly random, but now one important thing that

we  have  not  talked  about  is  that  this  is  the  Poisson  process  and  I  split  that

probabilistically into one or two more streams. Why should that also be a Poisson

process?  I  am  making  an  assumption  here  which,  yeah  the  probability,  some

probability p i  whatever be the distribution,  that is  the property which I  have not

taken, but that is an important property which we are now stumbling upon. I think in

one of your  ((  )) has proved that.  So,  merging of Poisson stream and splitting of

poison stream, it especially results in still a Poisson stream.



(Refer Slide Time: 13:28)

So, multiple Poisson streams at rates respectively lambda 1 through, it is a lambda k

when  combined.  It  results  in  a  Poisson  stream  with  parameter.  This  is  again

convenient assumption which is  (( )). It is nice because we look at for example, q.

When there are, when we look at one output queue of router, so this is the picture of

router. So, router will get several packets from various input line cards and there are ((

)) to this particular output port. So, packet from this queue will this port will come to

the queue from this port to this queue and so on. So, when I have several each of these

Poisson  stream,  independent  Poisson  stream,  each  of  the  midrate  lambda  1  and

lambda 2 and so on, then the effective arrival that this q, see this sigma lambda i and

that is so Poisson. That is why I can use my m/m/1 assumption, I merge different price

on stream. 



(Refer Slide Time: 15:22)

These are fundamental properties of Poisson process that we can look at  some in

standard textbooks like a splitting. I am saying stream whatever Poisson process. It is

stochastic process. So, if the input is coming with  (( )) lambda and then, based on

some probability which is fixed p 1, p 2, p l, so probability p 1 go to this will go to

one queue, p 2 goes to another queue and so on. Then, their respective queues will see

the voice on process with rate lambda p 1, lambda p 2 and so on. So, that is why

splitting example we saw before makes use of this fact, even though I am splitting,

but with equal probability. So, it is simply coin toss. It does not depend upon the state

of the queue. 

So, its state dependent questions on this which you mean same dependent. Queue

length dependent? Queue length dependent will that be theory better? So, you always

join the shortest queue, but there is still non 0 probability that service time for two

pockets might be so short that they finish off and then become empty. Then, there is

no packet in that corresponding queue because you guys all join the other queue. Just

queue jumping is not allowed. If you do not allow queue jumping, then you are stuck

in the queue that you join. Yeah, so for that still the probability that the second queue

also. You may be balancing the two queues that if there is a close formed, I will try to

find that. If not, then we can simply simulate, right. When we go to the simulation

part,  we can simply simulate that straight queue jumping.  So, you simply look at



current state two queue and take the shorter one and see that because shorter does not

mean that the service time, an average will be less, but instantaneous service time

could be fairly large. It is that always happen, right. You go to the bank, you pick the

shortest line. Definitely something is wrong with the line, that guy is going to take

forever. So, that is nobody goes over there. It is a reverse  (( )). Nobody goes to the

shortest line. That guy want to get DD and that is it. 

(No audio available: 18:54-19:08)

This  is  after  joining  the  queue  yeah.  That  I  have not  seen,  but  this  is  our  third

variation we are talking about. One is the joining time and other is keep going back

and forth which is some finite probability of staying in this queue or going to the other

queue. 

(No audio available: 19:25-19:33)

Yeah or you can have like a loud balance that trance in which is distributed system try

to you find that the queue length is longer, you simply migrate jobs to be on the other

processes. That also know one thing I have to find. I am not, I am not. Yeah all these

things are easy stimulated than solve. So, we will stop and I will just give you so we

will look at this M/G/1. So, we have done m/m/1 so far, will not today next week and

this  M/D/1 is  particularly  interesting  in  least  networks  because we are  talking  of

deterministic packet length. So, fixed packet length, especially when ATM systems

were being discussed, they will have fixed packet lengths. M/m/1 is more even for

you know for telephone systems, it is not exactly suited for routers because packet

(( )) do not follow the exponentially distribution and terms of length.



(Refer Slide Time: 20:44)

So, we will do that. Then, we will do this M/D/1 with vacations and the reason will be

the M/D/1 of vacation because that is the special case of TDM. TDM can be moral as

an M/D/1 server with vacations and you can get a very nice close form solution for

that. That is why we would like to do that and then, I am sorry what a vacation means.

What vacation means is server in our example so far, we have what called as a  (())

conserving server as long as there is a customer, we are going to serve the customer,

but we human, we never do that. We always tend to take vacation or breaks as we call

in the service sector. 

So, in this case again, it is not only server taking break, but you look at a machine. So,

machine will be constantly servicing jobs and then, you bring down the machine for

maintenance and that maintenance duration can be fixed and can be variable because

of repair also. Suddenly, it has to be repaired. So, the time to repair is again not a

fixed time. That is also exponential.  It  can follow general distribution.  So, in that

context what happens during the busy there maintenance period, the system is idle,

customers are waiting. How do you characterize that? Within the presence of vacation

what is the expected waiting time and delay and things like that. This is that is why

this vacation comes. It is not because this is true in case of machine scheduling and

things like that. 



So, then we will go back to the (( )) allow have that example that you looked at. It is

also there for your project implementation. We looked at different approach to  (( ))

allow have that because I worked it out twenty years ago. You have to suffer through

that. We will come back and (( )) have a Marco chain, but not in terms of the number

of users, but in terms of single of users just to give in other way of try to modular

system. You can also get to the same set of results by modeling (( )) of single user in

the context of other user. It is little bit more involved, but (( )) solve set up equation to

get. I think that is probably where we will stop. 

Then, the GMN all that stuff, the results are there in the text book. We will stop at that

point  with  respect  to  the  open  queues.  Then,  after  that  we  will  move  into  Q  in

networks.  So  far  we  will  be  all  single  queues.  Then,  we  will  look  at  how  you

interconnect  using  together.  The  queuing  network  is  actually  you  look  at  a  real

computer system. The examples that we saw before in the tutorial also that all of you

skipped where there is CPU feeding to device queues and then, it comes back. So,

those are the kind of the systems where you need to get some idea of what is the (( ))

system. Let us switch gears to M/G/1. M/D/1 is after M/G/1. M/D/1 is automatic.

(Refer Slide Time: 23:54)

So, see all discussion on the test, let us come back to. So, for M/G/1, the arrivals on

Poisson like before and the rate of the arrival is lambda arrivals per seconds. As per

the service process goes, it can be any service distribution. There are besides the mean



in the case of exponential, we knew 1 over mu is mean, 1 over mu squared was the

variance and all those things. So, here we need besides the mean service times. Let us

say just sitting at bank watching how long it takes to serve each customer. So, you can

compute the mean very easily, ok just way the sample (( )). You can also compute the

second moment. 

We simply square off all the service time divided by the number of customers requests

that have been serviced. So, this is the second moment of service time. It will happen

that with these two, we can quickly derive the M/G/1, same thing waiting time and all

the other metric you want to look at we can easily derive. So, we will let, so the row is

the same as before. It is lambda by mu, where 1 over mu was the average service

time. So, here it is simply lambda into E of s. 

The definition is same as before ratio of a product of arrival rate into the average

service time. Then, we have some other definitions. So, W i is the waiting time of the

ith customer. Customer comes in and how long customer wait in the system before

getting service. This is the waiting time. Now, when the customer, ith customer comes

in,  two  things  are  possible.  One,  the  server  is  busy  or  the  server  is  idle,  two

possibilities. So, if the server is idle, then this notion of residual service time. That is

why R i represents. This is residual service time seen by ith customer. 

See the customer, if a customer is being serviced, served by the server, what is the

remaining service time for that customer? Say j is the customer being serviced, so that

is this, but I see as I enter, so R i is the customer j whose been serviced the remaining

service time. That is what R of i (( )). In the case of exponential service, that is always

1 by mu. Whatever point you look at the server, the customer service is always 1 over

mu because of memory less property, but in the case of other distribution that need not

be the case. 

Therefore, there is some remaining service time for the current customer being service

that what R of i represents, that is the server is busy. If it is not busy, it simply goes to

0.  There is no, this  guy will  get served. The server is  idle.  The ith customer will

automatically get serviced by the server itself and therefore, there is no waiting time

itself goes to 0. So, if server is idle upon arrival, then R i goes to 0. R i goes to 0, W i



also goes to 0. There is no waiting time for this particular customer. R i is just the

customer that is getting serviced. That is all. 

W is the other customer. W is the total waiting time. Say I come to the queue and

there are five customers already in the queue. There is this other guy getting serviced

by the servant.  The guy is  getting serviced by the servant.  That remainder of the

service time is the R i. W i is the time that is going to take every one to get serviced.

That is all. 

Yeah, the time taken in for the remaining customers in the queue, so when we derive

the W i, you will see that why this R i is special. This thing is; this server? No, there is

no R i. The server is idle which means the queue itself is idle. There is no, the queue

is empty rather. If a new customer comes in and finds the server is ideal, what does

that mean? That at point there is no customer to be serviced. Otherwise, the server

would have been servicing the customer in the queue assuming it is a work consuming

queue.  In  the  case  i  as  the  part  of  one  by  the  fractional  there,  in  the  case  of

exponential, R i is always 1 by mu because it is so because whatever time you look at

the system, it is mu.

(Refer Slide Time: 28:56)

Now, let us look at this. So, then we will say S i is the service time of the ith customer

and then, N i. So, N i is the number of customers in the queue waiting for service at



the time when i arrives. So, this is looking at the system from ith i perspective. So, if

you  represent  this  as  my  queue,  here  are  some  people  waiting.  There  are  some

customer j who is getting serviced and then, i is, this is the ith customer. Assume that

customer numbers sequentially. So, i is the id of the customer just now entering the

system. So, what will be the id of the customer at the head of the queue? There are N i

customers. Therefore, it is i minus N i. 

Now, we have this waiting time for the customer i is given by the residual time for

this customer j, this fellow which we called R i because its R i is not the time that i

see when there is somebody j is getting serviced on the system. What is the remainder

of  j  service  time system is  what  we denote  as  R i  and then,  i  equals  (No audio

available: 31:08-31:25).

See simply adding of the service time of all the people in front of me plus the residual

service time for the customer under service. That is all. This is not very hard, right. 

(No audio available: 31:35-31:43)

So, these S i are random variables. So, they follow whatever distribution that we are

saying and N i is independent of this S i. If I take the expectations on both side, again

I am skipping some of the, if I take the expectation for some of random variables, then

it will be simply product of the corresponding expectations



(Refer Slide Time: 32:08)

So, E of W i is E of R i plus this is the expected number of customers in the system

when I enter the system into simply E of s. We said that taking expectation on both

sides, s is nothing, but service time and what do the service time average in the long is

simply E of s. So, this N i is the number of customers were in the queue when I enter

the system. So, we now know there from little’s law, E of N i is the queued customer.

So, what is that? Lambda into E f. We call as n queue before, but using it slightly rate

differentiation because I am taking from another book, my old book Bostacars and

Galagar,  MIT. So,  that  is  1982-87  book.  Some of  the  terms  except  this  x,  I  am

changing that to f s is everything is following that notation. 

So, by little’s law and then, we can assume that has approached infinity, we assume.

So, this is basically the average weight in times E of w which we have seen before is

essentially we call it E of R. Simply drop all the I’s as I  (()). Therefore, (No audio

available: 34:04-34:16). 

So, N i is this one and E f is also there which often that lambda E s is 1 minus is row.

So, I simply this is basically row into E of w. Yes several take vacation and that will

be simply that plus average vacation time. That should be 0 yes. Basically, E of R is

now related to E of w. So, the average waiting time seen by a packet is simply the, is

proportional  to  the  residual  time  of  the  customer,  average  residual  time  of  the



customer that is into divided by 1 minus row. That is first part of the derivation. This

is one. R is basically w equals R by 1 minus row. 

(No audio available: 35:25-35:39)

So, this guy arrived at some point in time. Let see that what we represents. 

(Refer Slide Time: 35:53)

So, this customer j is currently in service. If you were to draw this symptom of a time

axis, this is when j stared service, this is when I arrived and j’s finishing time is this.

This is the time that is going to be taken to service j, the total service time and so, the

time that is remaining is what I call as (( )). That is all the remainder, right. 

So,  I  have to wait  until  this  guy gets finished, all  the people in  front  of me gets

finished. So, the average of that simply the average number of customers I see in the

queue when I enter into the average service time. Average I see 5 people when I enter

and each customer is going to take 10 seconds on average. Therefore, the average

time to get people in the queue would not have started service in simply 50 seconds.

Now, what we need do is some of figure out what this E of R is. To get to the E of R,

we use a slightly different way to.



(Refer Slide Time: 37:05)

So, let us say that I defined r f tau. So, there is a time varying function call r f tau, that

is, the residual service time at time tau. I fix some random time tau and see either the

customer in service is not in service. If there is no customer in service, then the r of

tau is 0. If there is a customer in service, then simply the remainder of that customer

service time. So, I can plot this with respect to r of tau. 

Let us see that upon to this point, this is my say you know 0. Up to this point, there

was no customer to be serviced. Then, suddenly there is a customer to be serviced. So,

what  will  when customer start  serviced,  let  that  customer service time be S1, the

customer number 1. So, r f tau will become simply S1 because instant what is the

service time Si. Residual service time is S1. Then, as t in or tau increases, this keeps

on decreasing linearly. So, it will come down to 0 and it will take S1 time. If there is

yet another process or job waiting to be serviced, let us say that takes time S2. So, it is

like a sort of graph like this. 

Assume there is for little while, there is no customer to be served, then after that it

goes like this, it goes like this and so on. So, then I am interested in the sometime in

time instant t at which point time we want to do some (( )). So, up till this point t, let

m of t be the number of service completion. So, how many customer were served in

the interval 0 t? This is S 3. This continues, but I am interested of this is some point t.



Now, if I take the area under the curve and divide that by t, is that my average residual

time E of R? The average residual time is simply r of tau from 0 to t. Divide this by t.

So, that is r of tau is instant of time and then, dividing it by total time taken. That is

my average residual time. Each r of t is instant residual time and adding them off

dividing  that  by  total  time  interval  t,  length  of  the  interval  t,  that  is  the  average

residual time. Not a very hard thing to accept, right. 

So, what is that? Just look at this. Just write of a set square. That is all. So, this is 1

over t i going from 1 to M of t half set square. Simply the area falls the triangles

which is half a square set square simply adding the whole of. So, this now we can

make a little bit interesting by saying this is M of t by t and then, I have this S i square

by M of t. 

So, what is M of t by t? M of t by t is the number of completion, average number of

completions  and  in  an  m/m/1  system and  M/G/1  system with  infinite  queue;  the

number of completion is equal to the number of arrivals. Trooped is basically equal to

lambda as long as row is less than 1. That is the balance because only if have 10

customers are coming for unit time, then they will leave the system again. If you look

at the number of customers leaving, that is also going to be 10. So, lambda is also

equal to mu. 

Therefore,  this  is  basically  lambda into so M t  by t  is  the trooped of  the system

number of customers leaving the system which in a balance system which row less

than 1 is always going to equal the number of customers arriving. I cannot have more

customers leave the system than arrival. That will be very suspicious. It has to be

equal  and  I  cannot  have  an  average  number  of  customer  should  be  can  be  one

customer less, may be depending on the observation interval, but in the long time, we

simply say that it is equal. Ok, I forgot the half. So, we will do lambda by 2 into, so

what is the sigma s squared by m of t? E of s squared is the second moment by

definition. E of s is simply s 1 s 2 by n, E of s squared is simply s 1 squared s 2

squared divided by m. So, this is, so that is why the results not depend upon row

which depends upon E of s as well as E of s squared is the second moment. 

(No audio available: 43:00-43:43:19)



Yeah by i (( )) yes so in the, we are taking that is one derivation. This is other way of

also looking at  the residual time. What will  be any packet on arrival,  what is the

residual time, we are going to see. This is the long term mean residual time is what we

are talking about. 

(No audio available: 43:30-43:35)

Yeah, in the second part I am deriving it, direct define it that way, but it also can be, it

also can be defined in this way, derived in this way. What is the mean residual time

that any customer arriving at any point of time we will see. If customer comes here at

this  point,  it  will  be  (()) will  be 0,  but  what  the long term average is  over  some

interval that you are measuring of the value. That is what you are computing. So,

remove all of these are mean. Therefore, it is not instantaneous.

(Refer Slide Time: 44:09)

So, therefore, E of w equals lambda. Then, there other things are straight forward. E

of r is simply E of s. So, with this basic result, we can also figure out what M/D/1 is.

We can go back and see. All we need is second moment. What is the second moment

of finite distribution? Second moment of M/D/1 is not 0. Second moment is not 0,

variance is 0. Second moment is simply E of s squared because all values are E of s, E

of s and service time is constant. Therefore, E of s is simply one value. There is only

one value whatever its sum, we just have E of s. 



Therefore, second moment is simply E of s squared. So, it will be lambda E of s to the

whole squared. So, we will have lambda, E s will give you row into service time there

were it by 2 into 1 minus row and that will, so what we will see at for the least waiting

time will be seen for M/D/1. We cannot do any better than that because that is  (( ))

that c of v is also 0. Variance is going to be 0. We will derive that in terms of the book

has the slightly different formula. Rajan’s book has slightly one plus the question of

variation whole square. That we will come back and derive it next week.


