
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 11

Lecture 54

Lecture 54 : Approximation Algorithm for Multicut Cont.

 So, in the last lecture we have started seeing the multicut problem, we have written down
the LP relaxation of it and we have observed that it has although it has an exponentially
many constraints, we can design a polynomial time separation oracle based on standard
shortest path algorithms like Dijkstra. which enables us to get an optimal solution for that
linear programming relaxation using ellipsoid method for example. and then using an
optimal solution we defined a metric which is also called shortest path metric on a graph.
And using those metrics we defined balls around some vertices si of radius r and then we

discuss that it will be useful to view each edge as a pipe of length xe and cross sectional

area of ce. And hence the contribution of this edge e to the objective function is the
volume of the pipe.

 and using this we have then defined the volume of all pipes in the radius of ball are

around si plus
V ∗

k
 and then we stop. So, let us begin from there and see how that

quantities are useful to design O(log k) factor approximation algorithm ok. So, let us

begin multicut problem continue. So, let us recall we had defined volume of ball centered

at si of radius r to be
V ∗

k
 plus the volume of all pipes that are at most distance r from si.

 So, there are two kinds of pipes which are correspond to edges of the graph where both
end points belong to the ball. u and v both belong to the ball B centered at si of radius r

ce xe
∗ plus there are balls whose one end point exactly one end point there are edges

whose exactly one end point belongs to the ball u belongs to B (si , r), but v does not

belong to B (si , r). So, what is the contribution here? ce times r minus distance of siand u.

Now, the what is the role of first term? The first term ensures that V (si , r) is nonzero

irrespective of the value of r.

 The first term ensures
V ∗

k
 ensures that V (si , r) is not equal to 0 irrespective of r in

particular V (si ,0) is equal to
V ∗

k
 which is not equal to 0. And, the second term and the

second and third term if we add over all edges, then we will get from here the it will get a
connection to the LP-opt ok. Now, let us define some more notation. which we have used
before also for a given radius r. Let look at the ball of radius r from si centered at si.

 These are the set of vertices whose distance is at most r from si. So, these are subset of

vertices. So, for any subset of vertices the notion of boundary edges make sense. So, δ of
this are the boundary edges of this subset recall what are boundary edges of a subset these
are the set of edges whose exactly one end point belongs to the subset. And I want to
compute the sum of costs of this edges.

 So, see this is the sum of the costs of edges whose exactly one end point belongs to the
ball of radius r around si ok. Now, first we claim that there will always exist a radius r

whose such that the cost of boundary edges is small in some sense. So, here is a lemma
which we will use now and we will prove later. For any si one can find in polynomial

time a radius r strictly less than half such that If I look at the ball of radius r around si

and look at the boundary edges and their cost sum of costs, this is less than equal to
2 ln (k+1) V (si , r) ok. So, this we use in our algorithm.

 So, with this black box lemma let us first see the algorithm. So, we begin with the empty
set F of edges, we iterate for k iterations, the goal of iteration i is to add edges in F such
that si and t i are disconnected in G (V , E∖F) ok. And how do I find this edges? We use

this lemma to do that we compute an less than half such that cost of boundary edges of
the B (si , r) is less than equal to 2 ln (k+1) V (si , r) ok. So, once we get such an r we add

the boundary edges of this ball.

 to F. Notice that if I remove the boundary edges si and t i gets disconnected because si

belongs to the ball, but t i does not belong to the ball because si the distance between si

and t i is at least 1 and this radius r is less than half. But after this we remove all the

vertices of B (si , r) along with its incident edges. from the graph and continue. So, we

define this balls and boundary edges are with respect to the current set of edges in the
graph. So, note that this quantity is say B (si , r) and V (si , r) are taken or defined with

respect to the vertices and edges.

 that remain in the current graph ok. So, let us write down the pseudo code of the

algorithm let x∗ be an optimal LP solution initial we initialize F the set of edges to be

finally, removed to be empty set i=1 ,…,k , if si and t i are connected in (V , E∖F). we

choose the radius r, let r less than half be such that cost of boundary edges of the ball
around si of radius r is less than equal to 2 ln (k+1) V (si , r).
We use the lemma to choose such an r, then we add the boundary edges of the ball of
radius r around si in my solution that I am building F∪δ (B (si , r)) and then we remove

the entire ball B (si , r) and its incident edges. Remove B (si , r) along with edges. So, this

ends the if body and the for loop and then we return F. So, this is the pseudo code of the
algorithm, a priori it is not at all clear that F is a valid solution, if I remove F all si and t i

gets disconnected. So, let us first prove this lemma our algorithm a feasible solution for
the multicut problem.

 So, let us see how it can go wrong the only possible way. So, let us write. So, the only
possible way it can go wrong is that say at in iteration i, I am looking at the ball of radius
r around s i. and I take this boundary edges in my solution, but there are and I delete these
things s delete the vertices in the ball and what if this ball has an s j - t j. then I am not

picking any edge on in the path if there is a path between si and t j and of course, there is

a path because both are connected to si then I am not removing any I am not removing

the path between s j and t j because I am picking only boundary edges of the ball.

 So, this is the only way that the algorithm can go wrong and let us argue that it cannot
happen. In the sense that in a ball of radius r around si cannot contain both s j and t j for

any index j. So, let us write the only possible way that F might not be a solution to the
multicut problem. is that there exists an index j∈[k] such that both s j and t j belongs to

B (si , r) ball of radius r around si for some index i∈[k]. We will argue that this cannot

happen, let us see why it cannot happen.

 So, if for contradiction both s j and t j belong to the ball of radius r around S i, then you

see the distance between s jand t j. by triangle inequality this is less than equal to distance

between s jand si plus distance between si and T i. Now, the first one is less than equal to

r because s j is in the ball of radius r around si. The second one is also less than r because

t j is in the ball of radius r around si, but r is strictly less than half. So, this is less than

equal to sorry less than strictly less than since r is strictly less than half.

 But then there is a contradiction to the fact that x∗ is a valid solution. In any valid
solution the distance between any pair of vertices s j and t j must be at least 1. So, this

contradicts the fact that x∗ is a valid solution of the LP. So, it cannot happen that for
some index j both s j and t j belongs to the ball. Hence, if is a valid solution of the

multicut problem.

 Using this what we will show is that the approximation guarantee approximation ratio of
our algorithm is at most 4 ln (k+1). So, the theorem the approximation factor of our

algorithm is at most 4 ln (k+1). So, in the next class we will see the proof of this theorem

along with the proof of the lemma that we have used in our algorithm crucially ok. So, let
us stop here. Thank you.

