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Lecture  54  :  Approximation  Algorithm  for  Multicut  Cont.

 So, in the last lecture we have started seeing the multicut problem, we have written down 
the LP relaxation of it and we have observed that it has although it has an exponentially 
many constraints, we can design a polynomial time separation oracle based on standard 
shortest path algorithms like Dijkstra. which enables us to get an optimal solution for that  
linear programming relaxation using ellipsoid method for example. and then using an 
optimal solution we defined a metric which is also called shortest path metric on a graph. 
And using those metrics we defined balls around some vertices si of radius r and then we 

discuss that it will be useful to view each edge as a pipe of length xe and cross sectional 

area of  ce.  And hence the contribution of this edge e to the objective function is the 
volume  of  the  pipe.

 and using this we have then defined the volume of all pipes in the radius of ball are 

around  si plus  
V ∗

k
 and  then  we stop.  So,  let  us  begin  from there  and see  how that 

quantities are useful to design  O(log k ) factor approximation algorithm ok. So, let us 

begin multicut problem continue. So, let us recall we had defined volume of ball centered 

at si of radius r to be 
V ∗

k
 plus the volume of all pipes that are at most distance r from si.

 So, there are two kinds of pipes which are correspond to edges of the graph where both 
end points belong to the ball. u and v both belong to the ball B centered at si of radius r 

ce xe
∗ plus there are balls  whose one end point  exactly one end point  there are edges 

whose exactly one end point belongs to the ball u belongs to  B (si , r ), but v does not 

belong to B (si , r ). So, what is the contribution here? ce times r minus distance of siand u. 

Now, the what is the role of first term? The first term ensures that  V (si , r ) is nonzero 

irrespective  of  the  value  of  r.



 The first term ensures  
V ∗

k
 ensures that  V (si , r ) is not equal to 0 irrespective of r in 

particular V (si ,0) is equal to 
V ∗

k
 which is not equal to 0. And, the second term and the 

second and third term if we add over all edges, then we will get from here the it will get a  
connection to the LP-opt ok. Now, let us define some more notation. which we have used 
before also for a given radius r. Let look at the ball of radius r from  si centered at  si.

 These are the set of vertices whose distance is at most r from si. So, these are subset of 

vertices. So, for any subset of vertices the notion of boundary edges make sense. So, δ  of 
this are the boundary edges of this subset recall what are boundary edges of a subset these 
are the set of edges whose exactly one end point belongs to the subset. And I want to 
compute  the  sum  of  costs  of  this  edges.

 So, see this is the sum  of the costs of edges whose exactly one end point  belongs to the  
ball of radius r around si ok. Now, first we claim that there will always exist a radius r 

whose such that the cost of boundary edges is small in some sense. So, here is a lemma 
which we will use now and we will prove later. For any si one can find  in polynomial 

time a radius r strictly less than half such that  If I look at the ball of radius r around si 

and look at the boundary edges and their cost sum of costs, this is less than equal to 
2 ln (k+1) V (si , r ) ok.  So,  this  we  use  in  our  algorithm.

 So, with this black box lemma let us first see the algorithm. So, we begin with  the empty 
set F of edges, we iterate for  k iterations, the goal of iteration i is to add edges  in F such 
that si and t i are disconnected in G (V , E∖F ) ok. And how do I find this edges? We use 

this lemma to do that we compute an  less than half such that cost of boundary edges of 
the B (si , r ) is less than equal to 2 ln (k+1) V (si , r ) ok. So, once we get such an r we add 

the  boundary  edges  of  this  ball.

 to F. Notice that if I remove the boundary edges si and t i gets disconnected because si 

belongs to the ball, but t i does not belong to the ball because si the distance between si 

and  t i is at least 1 and this radius r is less than half. But after this we remove  all the 

vertices of  B (si , r ) along with its incident edges. from the graph and continue. So, we 

define this balls and boundary edges are with respect to the current set of edges in the  
graph. So, note that this quantity is say  B (si , r ) and  V (si , r ) are taken or defined with 

respect  to  the  vertices  and  edges.

 that  remain in  the  current  graph ok.  So,  let  us  write  down the  pseudo code of  the 

algorithm let  x∗ be an optimal LP solution initial we initialize F the set of edges to be 



finally, removed to be empty set  i=1 ,…,k , if  si and t i are connected in (V , E∖F ). we 

choose the radius r, let r less than half be such that cost of boundary edges of the ball 
around  si of  radius  r  is  less  than  equal  to  2 ln (k+1) V (si , r ).
We use the lemma to choose such an r, then we add the boundary edges of the ball of  
radius r around si in my solution that I am building F∪δ (B (si , r ))  and then we remove 

the entire ball B (si , r ) and its incident edges. Remove B (si , r ) along with  edges. So, this 

ends the if body and the for loop and then we return F. So, this is the pseudo code of the 
algorithm, a priori it is not at all clear that F is a valid solution, if I remove F all si and t i 

gets disconnected. So, let us first prove this lemma our algorithm  a feasible solution for 
the  multicut  problem.

 So, let us see how it can go wrong the only possible way. So, let us write. So, the only  
possible way it can go wrong is that say at in iteration i, I am looking at the ball of radius  
r around s i. and I take this boundary edges in my solution, but there are and I delete these 
things s delete the vertices in the ball and what if this ball has an s j -  t j. then I am not 

picking any edge on in the path if there is a path between si and t j and of course, there is 

a path because both are connected to si then I am not removing any I am not removing 

the  path  between  s j and  t j because  I  am  picking  only  boundary  edges  of  the  ball.

 So, this is the only way that the algorithm can go wrong and let us argue that it cannot 
happen. In the sense that in a ball of radius r around si cannot contain both s j and t j for 

any index j. So, let us write the only possible way  that F might not be a solution to the 
multicut problem. is that there exists an index j∈[k ] such that  both s j and t j belongs to 

B (si , r ) ball of radius r around si for  some index i∈[k ]. We will argue that this cannot 

happen,  let  us  see  why  it  cannot  happen.

 So, if for contradiction  both s j and t j belong to the ball of radius r around S i, then you 

see the distance between s jand t j. by triangle inequality this is less than equal to distance 

between s jand si plus distance between si and T i. Now, the first one is  less than equal to 

r because s j is in the ball of radius r around si. The second one is also less than r because 

t j is in the ball of radius r around si, but r is strictly less than half. So, this is less than 

equal  to  sorry  less  than  strictly  less  than  since  r  is  strictly  less  than  half.

 But then there is a contradiction to the fact that  x∗ is a valid solution. In any valid 
solution the distance between any pair of vertices  s j and  t j must be at least 1. So, this 

contradicts  the fact that  x∗ is a valid solution of the LP. So, it cannot happen that for 
some index j  both  s j and  t j belongs to the ball.  Hence, if  is a valid solution  of the 

multicut  problem.



 Using this what we will show is that the approximation guarantee approximation ratio of  
our algorithm is at most  4 ln (k+1).  So, the theorem  the approximation factor of our 

algorithm is at most 4 ln (k+1). So, in the next class we will see the proof of this theorem 

along with the proof of the lemma that we have used in our algorithm crucially ok. So, let 
us stop here. Thank you.


