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Lecture  48  :  Primal-dual  Algorithm  for  Steiner  Forest  Contd.

 Welcome. So, in the last class we have started seeing the primal dual method-based 
algorithm for generalized Steiner tree or Steiner forest problem. So, let us continue that.  
So, let us briefly recall each edge have a cost ce which is greater than equal to 0 for every 
edge. And we have k pairs of vertices s1 , t1 ,…, sk , t k and I want to pick a set of edges of 

minimum total sum of cost such that in the graph induced by this set of edges all  si is 

connected  to  t i is  connected  for  every  for  every  i∈[k ].

 Now,  why  this  is  a  generalized  Steiner  tree  problem?  In  the  standard  Steiner  tree 
problem, we are given a set of terminals which we need to connect amongst themselves. 
In the standard Steiner  tree problem, we are given a set of terminal vertices  which we 
need to connect. Let us denote this terminal this set of terminal vertices as T. So, set T of  
terminal vertices which we need to connect with minimum cost  So, how come this is a 
special case of the standard Steiner tree problem is a special case of generalized Steiner 
tree.

 Because in the generalized Steiner tree you define for every i j so, 1 and cardinality  So, 
suppose this set T of terminals be {1 ,2 ,…,l}. So, this is l. Now, for every pair of vertices 
you define  S={i} and T={ j}. So, maybe for  s1 ,  t1 then s2 ,  t2. So, you see we have l 

choose  to  pair.

 So, in the generalized  Steiner tree problem we have 
l (l−1)
2

 pairs to connect. So, if we 

have a algorithm for generalized tiner tree problem, we can use that algorithm for the 

standard tiner tree problem that k will be replaced by cardinality of 
t (t−1)
2

 ok. So, with 

this now let us resume our primal dual algorithm and we have observed that we need to 
bound the cardinality of δ (S) intersection if by some α  to get an α  factor approximation 

algorithm for all S in let us call that collection Ѕ. So, Ѕ is the set of all union of all those 



si's ok. but it turns out that we cannot uniformly bound with some constant and here is an 

example.

 So, consider a complete graph on k+1 vertices. So, let V={1 ,…,k+1} ok, all the source 
vertices are 1. So, we have s1 s2 ,…, sk  all are the first vertex. On other hand t1=2, t2=3, 

t k=k+1 and  the  cost  of  every  edge  is  1.

 Cost of every edge  is 1. Now, let us see where the primal dual algorithm get wrong or 
go wrong. So, in the beginning all vertices are isolated vertices and in the beginning the  
set  of  all  connected  components  calc  are  k+1 and  the  algorithm  picks  one  such 
component. So, let  the algorithm picks C equal to 1 this component in the first iteration.  
then  y1 this  dual  variable  will  be  increased  to.

 1 and that is all other dual variables will remain 0 throughout the algorithm. So, check 
that y1 is the only  nonzero dual variable at the end of the algorithm. So, let us see. So, in 

the first iteration this is vertex 1 and yC is increased and all this edges. So, this is say 2 

this  is  3.

 up to this is k all these edges becomes tight. So, the algorithm will simply keep picking 
all these edges in k iterations. So, the edges picked by the algorithm  is 1 2 then 1 3 up to  
1 k. So, these are the set of edges picked by the algorithm. Now, you see what is so, this  
is  F.

 Now, you see what is  intersection of δ (C ), but C for C take this one δ (C ) and F this is 

k ok. So, we cannot uniformly bound. in any iteration we cannot say that for every set S  
the intersection of boundary edges of S with F this cardinality is small. It can be as high 
as k for some set although for other sets other singleton sets in the first iteration these are 
the other sets 2, 3 and so on. So, these are the candidate components in the first iteration 
you  see  for  other  sets  the  intersection  is  small.

 So, however, for other  connected components of the first iteration before any edge is 
picked,  δ (C ) other component  δ (C )∩F is only 1 ok. In particular this sum  which we 

are actually interested to bound that |δ (i)∩F|=1 to this is k+1. So, let us make it k+1. 

So,  for  the  connected  component  1  this  intersection  is  k,  but  for  other  k  connected 
component this is exactly 1. So, this is 2 k in particular this sum is small and this is what 
we  are  interested  in  we  are  interested  in  not  just  1  we  are  interested  in  the  sum.

 So, this suggests  that the problem was we only increase one dual variable and that is it.  
So, the natural thing because this sum is small the average is small the average is is  
around 2 average intersection is around 2 to get the benefit of average it makes sense to 



increase  the dual variables of several sets in C simultaneously. ok. Again so, we increase 
all the dual variables in calc simultaneously and whenever a new edge the dual constraint 
corresponding to a new edge becomes tight, we pick that edge in our solution and we 
iterate.  So,  the  same  the  remaining  parts  of  primal  dual  algorithm  remains  same.

 So, let us name the edges in the order they are added. So, let e1 be the edge peaked in 

iteration 1, e2 be the edge peaked in iteration 2,  ei be the edge picked in iteration i and so 

on. So, what why it is needed because it can happen that the solution when the dual when 
the primal dual method terminates the solution the set of edges need not be minimal. So, 
it may be possible to get rid of some edges and  output a minimal solution and that is  
necessary because the edges the cost are greater than equal to 0. So, we can actually 
assume  without  loss  of  generality  that  costs  are  strictly  greater  than  0.

 Because, all the edges which whose edge cost is 0, we can initially pick them and what is  
called the we can merge the both endpoints of it ok. So, that if that I leave it to you as an  
exercise.  So,  what  we  do  after  the  algorithm the  main  loop  of  primal  dual  method 
terminates that means, if the set of edges is a Steiner forest, we see if we can remove any 
edge to make it minimal. Now, although the edges can be removed in any order without 
hampering  approximation guarantee or running time, the analysis becomes much smaller 
much easier if we try to remove the edges from in the reverse order of their addition.

 So, once the  main loop of primer dual method terminates with a Steiner forest. if we go 
over the edges in reverse order of their inclusion or stack order. to check if any of them 
can be removed without disconnecting  si and  t i ok. So, with this let us write down the 

pseudo code as usual we start with the dual feasible solution y equal to 0 and primal 
partial infeasible solution f equal to empty set and  we keep track of the number of edges  
added.  So,  that  that  is  needed  in  the  last  clean  up  step.

 So, while not all si - t i pairs are connected  in (V , F ) what do we do? We need to pick 

one edge. So, we call l+1 let C be the set of all connected components C of (V , F ) such 

that  cardinality  C∩{si , t i} this  is  exactly  1.  Then  we  increase  this  dual  variable 

simultaneously that is very important increase  yC for all  C in  C uniformly. you see 

cardinality of C is at most n number of candidate components. So, again in every iteration 
only at most n dual variables will be set to nonzero values and if number of iterations is at 
most  m  because  in  every  iteration  we  will  be  adding  an  edge.

 So, total number of dual variables which can ever be set to nonzero values is at most m 
times n which is polynomial meaning. So, we increase  yC for all C in C uniformly until 

for some edge el∈δ (C
’) C ’ in calc the dual constraint becomes tight. cel cost of this edge 



becomes equal  to  S such that  el∈δ (S) yS this  becomes equality.  And then as  usual 

standard thing we include  el∈F the solution that we are building  So, this finishes the 

while loop. So, at  the end of the while loop F is a Steiner forest,  but it  may not be 
minimal.

 So, what we do? We remove edges unnecessary edges from F in the reverse order of 

their addition. So, F ’ equal to F while  or not while we will do in the reverse direction for 

k=l , l−1 ,…,1. If F ’ minus ek is a feasible solution  then we remove ek from F ’ that is it 

and at the end we have a minimal solution. So, return  F ’.  So, this is the primal dual 
algorithm.

 So, here is a big theorem that we will prove the above algorithm has an approximation 
factor of at most 2. So, for that we need to have one lemma. So, let us write down the  
that in any iteration if you look at calc the set of all connected components which has  
exactly one of si and ti. So, for any C that means, for any iteration the corresponding C.
 iteration of the algorithm. If I look at the final solution and look at how many boundary 

edges it picks from all C in C and sum them. delta c intersection F ’ this sum is less than 
equal to twice cardinality C ok. So, these are lemma we need to show and assuming this  
lemma we will first prove this theorem and then we will prove this lemma ok. So, let us 
stop here. Thank you.


