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 Welcome. So, in the last  class we have started seeing the primal dual algorithm for 
minimum weight feedback vertex set problem. So, let us continue that. Minimum weight 
feedback   vertex  set.  So,  we  discussed  a  primal  dual  based  algorithm  very  natural 
algorithm.

 So, let us write the pseudo code of that algorithm. So, we started with the dual feasible  
solution y equal to 0. So, y is a vector y equal to 0 means that all yC's are 0 and the primal 

partial  incomplete  solution  is  s  equal  to  empty  set.  While  there  exists  a  cycle  C  in 
G [V ∖S ].

 What we do? We increase the dual variable until one dual constraint involving C,  yC 

becomes tight. This is the natural primal dual method increase yC until for some l∈C the 

constraint becomes tight. So, what is the constraint? Summation all cycles c prime in calc 

such that l∈C ’, yC ’≤w l, but this becomes tight that means, it becomes equal to w l. that is 

the  first  step once for  some vertex l  it  becomes tight  I  pick one such vertex in  my 
solution. See that it is it may be possible that there are more than one vertex for which 
this constraint becomes tight in that case also I pick only one vertex in my solution.

 So, S=S∪{l}. Then remove l from G, then repeatedly remove  all degree 1 vertices from 
G that is it and then return S. Why I say repeatedly remove? It may be possible that after 
removing 1 degree 1 vertex or some degree 1 vertices. there are new degree 1 vertices. 
For example, if you look at a path and the last vertex is degree 1, if you remove that  
vertex  the  second  last  vertex  becomes  degree  1.

 So, keep doing this keep removing degree 1 vertices old and new until my graph G does 
not have any degree 1 vertex. So, this is the natural primal dual algorithm for minimum 
weighted feedback vertex set  problem. So,  what  is  ALG? ALG is  summation of  the 
weights of the vertices in S. Now, all this vertices in my solution S are tied vertices that  



means, for all those  w i,  w i=∑ yC ’ this. So, this I replace with  i∈S  summation cycle 

C∈ ⸿  such that  i  belongs to the cycle C,  yC ok this  is  because of  the choice of  i.

 Then whenever we have 2 whenever we have double sum it may often make sense to 
exchange double sums. So, let us do that exchange. So, C∈ ⸿  and how many times yc 
appears? It is the number of vertices of in the cycle C which are picked in S. So, this is  
|C∩S|yC. Now in the standard analysis if we can bound cardinality of C intersection S 

by α  then we get we can write this is less than equal to α∑C∈⸿ yC  ok and because yC is 

a dual feasible solution by weak duality we know that this is  α∑C∈⸿ yC is less than 

equal to LP-opt of primal LP this is less than equal to α  times LP-opt which is less than 
equal to opt. So, this way we get an alpha factor approximation algorithm here if it is the 
case  that  |C∩S|≤α  for  all  cycle  C  in  this  graph.

 So, now let us see what we can hope for. So, one way to bound the number of vertices 
picked from a cycle is by the size of the cycle itself. So, we know that |C∩S|≤|C|. So, a 
natural modification of the algorithm which ensures small alpha is to pick only small 
cycles.  So,  how  about  the  algorithm  that  instead  of  picking  any  cycle.

 pick the smallest cycle and then iterate. So, if it happens that every times we are able to  
find a cycle with small length with length at most alpha, then we get an alpha factor 
approximation algorithm. But unfortunately this idea also fails because it may be the case 
that the graph is just one big cycle containing only n vertices. So, a graph may not have 
any small cycle. So, what to do then? But, then you observe that if a graph is just one big 
cycle,  then  the  feedback  vertex  set  is  just  one  vertex.

 Pick any vertex from that cycle and that is a feedback vertex set, pick one minimum 
weight vertex that is the solution. So, that is not really the hard instance. And in particular 
if  we have sequence of  a  path of  degree to  vertices  at  most  one vertex can be in  a 
solution. So, long cycles are not our problem, our problem are cycles with many vertices 
whose degree is greater than equal to 3. So, let us formalize this idea first make this 
observation  for  any  path  P  of  vertices  of  degree  at  most  2.

 our algorithm picks at most one vertex from P. that is intersection of P and S contains at 
most one vertex. In the final solution where S is the feedback vertex set output by our 
algorithm. So, why it is the case? First of all we can assume that the in the path P the 
degree of every vertex is exactly 2 because if there is a degree 1 vertex in the path P then 
because of our pre processing rule we are repeatedly removing degree 1 vertices the 
entire path gets removed and no vertex from the path becomes part of solution is not 
picked by the solution is picked by the algorithm. So, if we have a path P of all vertices 



of degree 2, at most one vertex can be picked because whenever we pick one vertex and 
delete that from the graph G, then those path breaks into two  paths each has exactly 1 or 
at  most  1  at  least  1  degree  1  vertex  and  if  a  path  has  a  degree  1  vertex  by  the 
preprocessing  rule  entire  path  gets  removed.

 So, take it as a homework to write the proof formally. So, even if I have a long cycle, but  
it has only few degree vertices of degree more than 2, then also it is fine because in any  
cycle if you have focus on vertices of degree greater than 2 the paths alternate. So, let me 
write. any cycle contains alternating paths  degree 2 vertices separated by vertices of 
degree  3  or  more.  is  just  a  simple  observation  if  you  look  at  any  cycle.

 So, if this is a degree to path, then at this end points. there will be vertices of degree at 
least 3 or say the same thing or differently you have you take a cycle c and highlight the 
vertices of degree 3 or more. Now, the in between these regions will be paths. let us 
formalize this in the following lemma and now you see if I have a. So, if not if  a cycle  
has k vertices cycle C has k vertices of degree 3 or more then  it has at most k maximal 
paths  of  vertices   of  degree  2  ok.

 Maximal paths means that those paths cannot be extended in either direction on the cycle 
itself. these cycles are fine because if it has a degree k it has k vertices of degree 3 or 
more then the number of vertices of this cycle that can be part of the solution will be at  
most twice k because this k high degree vertices will be part of solution and for each path  
at most one vertex can come in the solution. moreover C intersection S where S is the 
feedback vertex set output by the algorithm is at most  2k  ok. So, I have discussed the 
proof you can please write the proof formally it is a good homework and a training for  
writing mathematical proof formally. So, what I need is cycles with large number with 
small  number  of  high  degree  vertices.

 So, does there exist a cycle with small number of high degree vertices? So, next lemma 
says  There always exist a cycle of length cycle containing at most  2 log n many high 
degree vertices. So, here is the lemma that in any graph  g that has no vertices of degree 
1. this is the preprocess that is why we need that preprocessing rule of or clean up rule of  
removing all degree 1 vertices repeatedly so, that we can apply this lemma.  2⌈ log2n⌉ 
vertices  of  degree  at  least  3.  Moreover  there  is  a  cycle  C.

 Moreover such a cycle C can be computed  in linear time in O(|V|+|E|) the number of 

vertices plus edges. So, let us go to the proof. So,  a variant of breadth first search, where 
we treat every maximal path of vertices  degree 2 as edges ok and that is it. So, in the 
BFS tree in the modified  BFS tree the degree of every vertex is at least 3. in particular  
every  node  has  at  least  2  children.



 in the modified BFS tree ok. Now, if each node has 2 children the height of the BFS tree  
could be at most log n. Hence the height of the BFS tree is  at most ceiling of log of n. So, 
if I do not write base it should be assumed that base is 2 ok. So, now, if there indeed exist  
a cycle which contains at least one vertex of degree 3 or  then there will be a cycle or 
cross edge then  we will find a cycle while constructing the modified  BFS tree at some 
level  l.

 So, think of this modified BFS tree I am growing it and at some level I find a cross edge  
at this level is l. So, whenever I find a cross edge you see that I got one cycle. The length 
of such a cycle is at most  2 l ok, which is at most because l is at most filling of log n this 
length of such a cycle is at most of  2 log n. Now, each node corresponds to a node of 
degree at least 3 in the original graph and each edge corresponds to either an edge or a 
path of maximal path of vertices of degree 2. So, since each edge  either corresponds to 
an edge of G or a maximal path of  vertices of degree 2 such a cycle let us give it a name 
C, the cycle C corresponds to a cycle in G with at most twice ceiling of log n vertices of 
degree  3  or  more.

 Now, since breadth first search can be constructed in linear time this algorithm also can  
be computed can be executed in linear time and hence in linear time we can compute a 
cycle with at most twice ceiling of log n many vertices of degree 3 or more. So, the next 
class we will see how using these cycles we can get a 4 log n approximation algorithm for 
minimum weight feedback vertex set problem. Thank you.


