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 Welcome.  So,  in  the last  class we have seen the  dual  linear  program for  the linear
programming relaxation of set cover and we have seen two crucial few crucial results for
linear programming duality in the context of set cover. One is weak duality theorem, it
says that any dual solution of the dual linear program  provides a lower bound on the
primal  objective.  Second is  strong duality,  it  says that if  both primal  and dual  linear
programs  are  feasible,  then  their  optimum  values  coincide   The  third  one  is
complementary slackness. It says that if I have a pair of solutions primal and dual and for
every primal solution which is non-zero the corresponding dual constraint is tight and
also if for every dual variable which is non-zero the corresponding primal is tight. if both
holds all these conditions hold then x star and y star the solutions that we started with is
an  optimal  solution  and  it  is  a  characterization  of  the  optimal  solution.

 And with this let us continue our rounding for dual linear program for set cover, dual  for
set cover. I repeat we are only giving a very high level overview of linear programming
duality. I strongly recommend that you study linear programming and duality very well
from any standard material and there are lot of material available on online. This is this
high level overview is not at  all  a substitute  of in-depth study which we will  require
throughout  this  course  of  approximation  algorithm.

 So, let us recall what is the dual linear program, we are charging each element  e i

some amount  y i  and we want to maximize that charge. So, maximize  ∑i=1

n
y i ok

and we cannot charge any element any set of elements whose total sum of charges is
more than the weight of the set. So, subject to for all set j∈[m ]  if I sum the weight
charges  equal to  ∑i∈[n]ei∈S j

y i≤w j  and for all  i∈[n] , y i≥0 . So, this is the dual

linear program now we will round it to get an approximation algorithm for set curve. So,
what  is  the  algorithm?  The  algorithm  is  very  simple.

 So, we solve it and find an optimal solution recall  linear programs can be solved in



polynomial time that is a breakthrough result in theoretical computer science. the popular
simplex  method  although  it  is  practically  very  fast,  but  it  is  not  a  polynomial  time
algorithm. So, let ( y i

∗)i∈[n ]  be any  optimal solution of the above dual linear program.
And now we want to pick sets  which are which is  a solution and sets  correspond to
constraints.  So,  we  pick  those  sets  for  which  the  corresponding  constraint  is  tight.

 Again what is tight? Tight means that this inequality holds with equality. So, let I be
those sets S j  such that this constraint corresponding constraint is such tight such that

∑i∈[n]: e i∈S j
y i

∗=w j . So, let I be the set of such sets and our algorithm  outputs I. So,

few things we need to prove first of all it is not clear that I is indeed a set cover let alone
it  is  a  approximately  optimal  set  cover.  So,  let  us  first  prove  that  I  is  a  set  cover.

 I is a set cover proof, it is a proof by contradiction. So, suppose I is not a set cover. that
means, there exist an element which is not covered by the sets in I. that means, that for all
sets which contain it is corresponding inequality is not tight. So, we need to assume that
for every element there exist a set which contains it otherwise it is a clearly a no instance
it  is  a  infeasible  solution.

 So, I is a set covered  assuming the instance is feasible that is  every element of the
universe U belongs to some sets. This requirement you can see in the linear program also.
If there exist an element which does not belong to any set, then that element we can set it
to as high up value as possible which drives the maximum value of this linear program as
high as possible and hence this linear program will be unbounded. So, there will be no
optimal. and this is this is again a caviar this again follows from linear programming
duality.

 If  the  primal  linear  program  is  infeasible  then  the  dual  linear  program  must  be
unbounded and it has to be because if it is not unbounded again it follows from weak
duality. So, now, let us come back to the proof. Suppose e i  is an element which is not
covered by I, then this implies that for all  j∈[m ]  for all sets S j  such that e i∈S j
ok. For all such sets e i∈S j  all such sets which contains e i  the inequality is not tight
inequality  is  strict   ∑i∈[n]: e i∈S j

y i
∗<w j .  Now,  you  see  that  because  these  take  real

numbers and because all inequalities where y i
∗  appear is strict that means, these are

less than not equal to that means, there exist  some positive real number epsilon with
which  we  can  increase  the  value  of  y i

∗  and  still  all  inequalities  hold.

 This implies that there exists an epsilon greater than  such that we can increase the value
of  y i

∗  by  ϵ   without  violating  any  constraint.  However,  if  so  we  got  another
feasible solution with higher objective function value. So, this contradicts our assumption



that  y i
∗ . So, let us use some other notation say  ( y i'

∗)i∈[n ] . is an optimal solution
optimal  dual  solution  ok.

 because it is a maximization problem and if y i
∗  is an optimal solution no solution can

have higher value, but we have obtained another solution whose sum ∑i=1

n
yi '  ϵ

more than the value at y i
∗ . So, how come y i

∗  be an optimal solution. So, this shows
that we cannot have any element e i  which is uncovered, hence I must be a set cover,
hence I must be a set cover. So, our algorithm outputs a valid set cover. Next we need to
show  that  it  is  an  approximately  optimal  solution.

 So, we claim next claim our algorithm  achieves an approximation factor of f, where  f is
the maximum frequency of any element of the universe. we call what is the frequency of
an element? It is the number of sets where that element appears proof ok. So, what is
ALG? What is the cost of my solution? ALG is summation  of the sets i is the set that is
output  by  my  algorithm.  So,  ALG=∑ j∈[m ]:S j∈I

w j  ok.

 is this. So, this is  ∑j∈[m ]:S j∈ I
w j  now instead of w j  we write this w j  is greater

than equal to this. and see this is equal to because we are we have picked sets which are
tight. So, for every set  S j∈ I ,w j=∑i∈[n] : ei∈S j

y i
∗ ok. So, for every set  S j∈I  I am

summing over the y i  value of the elements in S j . So, again we have a double sum
and as usual we will try to rewrite the double sum exchanging the double sum and we
will  get  useful  results.

 So, you want to write from i equal to 1 to n. Now you see look at from every elements
perspective how many times their y i

∗  appears for an element e i . It is appearing for
those many sets which pick which contain e i  and part of the solution. So, this is you
see this is the cardinality of those sets j∈[m ]   such that S j∈I  and e i∈S j . So,
this  many  times  it  is  appearing  y i

∗  ok.

 Now, this number  is the number of times e i  appear in the set in the solution set. So,
this number is less than equal to f which is the maximum frequency of any element. So,

this is less than equal to ∑i=1

n
f y i

∗  take f out. f∑i=1

n
y i

∗  this is dual opt and dual

opt is equal to primal opt by strong duality which is less than equal to opt. So, we have
shown  that  ALG  is  less  than  equal  to  f  times  OPT.

 Hence  our  algorithm  has  an approximation  factor  of  f.  Now, can we improve this
analysis?  It  turns  out  not  and  we  have  we  show  some  interesting  result  from



complementary slackness. Let I be the solution  which is a collection of sets let I be the
solution of the dual rounding algorithm and  I’  the solution of the deterministic primal
rounding  algorithm then I’⊆I . That means, the dual rounding algorithm picks all sets
that the primal rounding algorithm picks and maybe more proof. Let us recall what was
the  primal  rounding  algorithm.

 So, i prime. So, let (x j
∗)j∈[m]  and ( y i

∗)i∈[n ] be primal and dual ah optimal solutions
ok. And let us recall what was I’  and what was what is I. i is those sets S j  such that
the dual constraint is tight means ∑i∈[n]: e i∈S j

y i
∗=w j . this is I and what is I’ ? I’

is all those sets  S j  such that the optimal values  x j
∗  this is greater than equal to

1
f

 ok.

 So, that is the thing. Now, recall  complementary slackness says that because both are
optimal solutions whenever primal is non-zero that means, dual is dual constraint is tight
whenever the primal some primal variable is non-zero the corresponding dual constraint
is tight. Recall for every primal variable we have a corresponding dual constraint and for
every dual variable we have a corresponding primal constraint. complementary slackness

conditions we have for all j∈[m ] , x j
∗≥1
f

 this implies that the corresponding constraint

must  be tight.  The corresponding dual  constraint  must  be tight  ∑i∈[n]: e i∈S j
y i

∗=w j .

 This implies that for all  j∈[m ] , S j∈I
’  implies  S j∈I . which is same as saying I

prime is a subset of I ok. So, the solution the total weight of the sets of the dual linear
programming relaxation algorithm cannot be less than the primal deterministic rounding
of  the  primal  linear  programming  relaxation.  and  this  follows  from  complementary
slackness conditions. So, in the next lecture we will continue and see some more use of
complementary slackness and primal dual linear programs for designing approximation
algorithms. Thank you.


