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Lecture  39  :   Randomized  Rounding  for  Prize  Collecting  Steiner  Tree  Contd.

 So, in the last class we have been doing the price collecting Steiner tree problem and we 
are doing a randomized rounding based technique and we are almost at the end of the 
analysis. So, let us briefly recall what we were doing. The problem is price collecting 
Steiner tree and the LP relaxation is minimize sum of the cost of edges picked e∈ E ce xe 

plus sum of the penalties of the vertices that we do not pick π (i ) (1 – y i). So, whenever I 

pick a vertex i to be part of the tree then there must exist a r to i path. ∑ xe is greater than 

equal to y i for all subset S⊆ V ∖ {i } and r∈ S and yr=1 and xe≥0 for all edge e∈ E and 
y i≥0 for  all  i∈ V .

 Now, we have seen already one deterministic rounding algorithm we solve it and let  

(x∗ , y∗ ) be an optimal solution. then we set a threshold α=
2
3

 and we pick all the vertices 

whose  y i
∗ value is greater than equal to  

2
3

. And those vertices I connect using as few 

edges as possible as minimum cost as possible and then we have seen that that gives a 
three factor approximation algorithm. So, we have seen  3 factor approximation algorithm 

by picking all vertices i∈ V  with y i
∗≥
2
3

 and computing  a minimum cost Steiner tree on 

this vertices. So, these we have seen it is a 3 factor approximation algorithm and then we 
have  started  looking  at  randomized  rounding  based  technique  we  said  you  pick  α  
uniformly randomly from the range [γ ,1 ] and then we analyzed and we showed that we 

showed two lemmas lemma 1 is expectation of the cost of edges in the tree e∈ E [T ]. So, 

the algorithm after picking α  uniformly randomly from the interval [γ ,1 ] is the same as 

the deterministic rounding algorithm. You pick all vertices i with y i
∗ value greater than 

equal to α  and compute a minimum cost Steiner tree problem Steiner tree on it. that that 
is a NP complete problem, but there is an approximation algorithm which we use it as a  
black  box.



 So, we have because gamma is chosen in α  is chosen uniformly randomly γ  is fixed the 
γ  value of the analysis will tell what value of γ  to set. Then we have shown that this is 

less than equal to  
2
1−γ

ln
1
γ
∑ ce xe

∗
 lemma. So, lemma 1 bounds the expected cost of 

edges, lemma 2 bounds the sum of expected sum of penalties of the vertices that the 

algorithm do not pick.  ∑ π (i )≤ 1
1−γ∑ π (i )(1− y i∗ ) ok. So, now, expected ALG. So, 

ALG  is  the  value  of  the  solution  of  the  out.

 So, ALG  is the value of the solution. So, expected ALG is expected sum of costs of  
edges. in T this term plus expected sum of penalties of the vertices in G which are not in  

treaty. the first term is less than equal to  
2
1−γ

ln
1
γ∑ ce xe

∗
 and the second term is less 

than  equal  to  
1
1−γ∑ π (i )(1− y i∗ ) ok.  So,  if  I  take  the  min.

 So, this is less than equal to minimum of this less than equal to maximum of these 2  

terms  
2
1−γ

ln
1
γ∑ ce xe

∗+ 1
1−γ∑ π (i )(1− y i∗ ) . Now this is LP-opt because  (x∗ , y∗ ) is 

an optimal solution. So, this is LP-opt. So, this is equal to max  
2
1−γ

ln
1
γ∑ ce xe

∗
 and 

1
1−γ

∑ π (i )(1− y i∗ ). LP-opt and then LP-opt is less than equal to opt. So, this is less 

than  equal  to  max{ 2
1−γ

ln
1
γ
,
1
1−γ }opt .

 So, this approximation factor is  max{ 2
1−γ

ln
1
γ
,
1
1−γ }.  So, we choose  γ  so that this 

term  is  as  small  as  possible.  So,  choose  γ  so  that  a  choose  γ  in  [0 ,1 ].  So,  that 

max{ 2
1−γ

ln
1
γ
,
1
1−γ }is as small as possible. So, for that we have to equate these two 

terms.

 So, that is  
2
1−γ

ln
1
γ
= 1
1−γ

. So, let us choose  γ  from the closed interval  [0 ,1 ]. So, in 

particular  γ  is  not  equal  to  1.  So,  γ=e
−1
2 ok.

 So, this is the  γ  we choose. So, the our the approximation ratio of our algorithm is 



1

1 – e
−1
2

 because  at  γ=e
−1
2 these  2  terms  are  same  

2
1−γ

ln
1
γ
= 1
1−γ

.  So,  this  is  the 

approximation  ratio  of  our  algorithm  which  is  roughly  2.54  and  you  see  this 
approximation ratio is smaller than 3. So, this is a better algorithm, but it is a randomized  
algorithm,  but  it  is  very  easy  to  de  randomize  this  algorithm.

 So, since there are  |V| variables  y i
∗, there are at most  |V| distinct values of  y i

∗. So, 

considering the  |V| sets you know for each  U j is all the vertices  i∈V  such that  y i
∗ is 

greater than equal to y j
∗ j∈V . we obtain all the possible sets of vertices peaked by the 

algorithm.  as  the  set  of  terminal  vertices  of  the  Steiner  tree  algorithm.

 for any random choice of α  ok. So, pictorially know if you plot these values y i
∗ values on 

real line. So, maybe this is y1
∗, maybe this is y10

∗ , maybe here is y2
∗ and so on. And this y i 

star values suppose this is yn
∗ and you see and this suppose this is 0 1. Now it does not 

matter in this region where  α  falls all values of  α  between corresponding between two 

consecutive  y i
∗ values  will  give  the  same  output.

 And hence because there are only n such values n such at most n such distinct values  
there are at most n such sets which we can iterate. Because, expectation of a random 
variable is always greater than equal to the minimum of the minimum value that the 

random variable can take. if we run this algorithm for all these possible sets y j
∗ and pick 

the best one the mean cost one, then because minimum is less than equal to expectation 
this  algorithm  also  achieve  the  same  worst  case  guarantee.  So,  our  de-randomized 
algorithm computes ah mean cost Steiner tree for every U j j∈V  Steiner tree let us call T j 

and outputs that Steiner tree which achieves minimum objective function value ok. Now, 
since expectation of a random variable is greater than equal to the minimum value that 
the  random  variable  takes  with  positive  probability.

 the  approximation  ratio  is  at  most  
1

1 – e
−1
2

 which  is  roughly  2.54.  So,  we  have  de 

randomized our randomized algorithm in the sense that we have extended the same idea 
without deteriorating the approximation guarantee of our algorithm. So, one can ask can 
we have a better approximation guarantee, can we have a better approximation algorithm 
for this  problem. So,  we show that  if  we use this  linear  programming relaxation we 
cannot  have  a  better  than  2  factor  substantially  better  than  2  factor  approximation 
algorithm.



 if  we  use  the  same  LP  relaxation,  we  cannot  have  smaller  than  2−2
n

 factor 

approximation algorithm. This is so, because the integral rate gap  the integrality gap of 

this LP relaxation is at least 2−2
n

. So, what is the integrality gap? Let us recall it is the 

gap is maximum over all instances the ILP opt. which is actually 
opt ( I )
LP

−opt  ok. So, for 

that let us consider an instance where we have a cycle Cn cycle of length n, the penalty of 

each  vertex  is  infinity  that  means,  all  vertices  must  be  selected.

 The penalty of each vertex is infinity and cost of each edge  each edge is 1. Now, what is 
ILP opt or opt(I)  opt (Cn) which is  ILP−opt (Cn) you have to pick all edges except 1 

edge that is the only solution that is the best solution which is n−1 defining xe=
1
2

 for all 

edges gives a valid LP solution. take it as a homework that this setting this  xe=
1
2

 of 

course,  y i=1 for  all  i  satisfies  all  constraints.  So,  LP−opt (Cn)≤
n
2

.

 Hence, integrality gap is greater than equal to  
n−1
n
2

 which is  2−2
n

 ok. So, let us stop 

here. Thank you.


