
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 06

Lecture 27

Lecture 27 : 3 Factor Approximation Algorithm for Prize Collecting Steiner Tree

 Welcome in this lecture we will study the price collecting standard tree problem and we
will see a constant factor approximation algorithm for it and we will use the technique of
deterministic rounding of linear programs. So, let us begin. So, we are continuing the
algorithm design framework of deterministic rounding of linear programs, linear
programming relaxation and our today's problem is price collecting standard tree. Before
that let us recall what is the classical Steiner tree problem. We are given a graph as input.
undirected weighted graph.

 G=(V , E) and cost on edges costs are positive and we are given set of set T of terminal

vertices T⊆V and we need to compute a tree which contains T and of minimum edge
weight. a minimum weight tree containing all vertices in T. The vertices in V ∖T are
called Steiner vertices they are optional vertices it may be useful to use some Steiner
vertices to connect the terminal vertices at lower cost. The vertices of V minus t are
called stainer vertices ok.

 So, what is the price collecting stainer tree? It is an extension or generalization of
classical stainer tree. again the input is undirected weighted graph. G=(V , E) cost on

edges. and there are certain penalties. So, penalties associated with each vertex.

 So, unlike the classical standard tree problem, we do not need to connect all the some set
of terminal vertices. It is like if we whichever vertices we connect are part of tree for
those vertices we do not incur a penalty and for other vertices which we omit for those
vertices we pay the penalty. So, that is the penalty function π :V→R≥0 and this is the

thing and a special this is the first special vertex called root r∈V . What is the output?
compute a treaty which contains r and minimizes the sum of the cost of the edges that we
are using in T, E[T] is the edge set of T that the costs plus the sum of the penalties of the
vertices which do not belong to T.

 V[T] is the vertex set of T is π (v). So, why it is a generalization? So, in the classical

Steiner tree problem if we set the penalty of terminal vertices to be infinity and the
penalty of Steiner vertices to be 0, then if we if we set in this price collecting Steiner tree
problem penalty of some vertices to be infinity and the other vertices to be 0, then this is
the standard tree problem because whichever vertex has penalty infinity that must belong
to the output T and whichever vertices have penalty 0 they can be omitted without any
penalty. So, the classical tenure tree problem is the same as the price collecting. standard
tree problem where π (i) or π (v) is infinity if this v belongs to the set of terminals in the

standard tree problem and 0 otherwise ok. So, it is a generalization.

 So, now, because the standard tree problem even the classical version is NP complete
this problem is also NP complete. Next, what we will do? We will write an integer linear
programming formulation of this problem. We relax the integrality constraints in that
formulation to get a linear programming relaxation of this problem and then we will use
deterministic rounding. So, that is the high level idea. So, let us begin with writing an
integer linear programming formulation of this problem.

 So, we introduce we have a variable xe for every edge e of this graph which will take

value 1 if e is included in the output tree. We also have a variable for each vertex,
variable say y v for every vertex v∈G which will take value 1 if v is included in the

output tree and 0 otherwise. Here also if the edge e is not included in the output then xe

will take 0 otherwise. So, with this variables it is easy to write down the optimization
function, we want to minimize the cost and plus the penalties of the vertices which are
not part of the output tree.

 So, minimize objective function. minimize the total cost of edges included. So, e∈E
ce xe. So, xe will be 1 if this edge is included in the output otherwise it will be 0. So, this

is the total cost of the edges included in the output tree plus for all vertex v.

 So, let us call it say i∈V . Now if I do not include i in the output tree then I will incur a
penalty of π (i). So, this will be incurred only if y i is 0. So, I will write 1− y i. So, if y i is

1 this penalty is not incurred.

 So, this is the optimization function we want to minimize next what we need we need to
write the constraints. So, that xe and y i are forced to take the values that we intend them

to take. So, the first is r this root vertex must be in the tree. So, let me write constraints
So, yr must be equal to 1 and then what I want is whenever y i is 1 for any i if y i equal to

1 there is yr I know yr is always equal to 1. I want to ensure that there exist a path where

all the edges I pick.

 Now, how do I encode this? So, one way to encode is if I look at all subset of vertices

which contains r, but does not contain y and if I look at the edges with exactly one end
point in S. at least one of the edges must be picked in my solution. So, for each i∈S so,
for each i∈V if y i equal to 1, then what I want is then I want for all subset S⊆V ∖{i} this

S should include should not include i and it should include r. at least one of the edges
must be picked summation e∈δ (S), δ (S) is the set of edges having exactly one end

point. in S formally that is all the edges e∈E [G] such that E∩S this cardinality is 1.

 So, at least one of the edges must be picked. So, xe this should be greater than equal to 1

if y i equal to 1 if y i equal to 0 we do not have any constraint. So, if I write this is greater

than equal to y i. it may not be clear why if I ensure that for all such r-i cuts at least one

edge is picked there that should ensure why that there exist an r to i path. So, that needs a
proof and so, let us prove it claim.

 there exists an r to i path if and only if for all subset S⊆V ∖{i} r∈S summation xe at

least 1 edge from δ (S) is picked proof. One direction is obvious that if there exist an r to

i path that path must use at least one edge from δ (S) So, this direction So, at least 1 edge

from every delta s must be picked. So, this is obvious. Since any r to i path must pick at
least one edge must contain at least one edge from δ (S).

 for every S⊆V ∖{i} and r∈S. The other direction is follows from max flow mean cut
theorem, which says that the maximum flow from r to to is equal to the minimum
capacity of one cut. for all S⊆V ∖{i} r∈S at least one edge is picked from δ (S). then the

size of minimum r-i cut is at least 1. one can send one unit of flow using the edges
picked.

 there exists an r to i path. So, not only this proves that these constraints are enough, it
shows that although we have exponentially many constraints, this proof gives a
polynomial time separation oracle. So, what is the final linear program? Linear

programming relaxation minimize ∑e∈E
ce xe+∑i∈V

π (i)(1− y i) subject to summation

what are the constraints that for all S⊆V ∖{i} and r∈S. at least one of the edge must be
picked at least one of the x is must be 1. If y i is 1 otherwise there is no constraint. So,

greater than equal to y i and yr equal to 1.

 and all this x is and y is they are binary valued either they should take either 0 or 1. So,
y i and xe belongs to {0 ,1} this is for all i∈V and e∈E. So, this is the ILP formulation to

get the linear programming relaxation we relax the integrality constraints. We replace this
integrality constraints with for all i∈V ,e∈E 0≤ y i≤1 and 0≤xe≤1 ok. So, here we have

exponentially many constraints, but you use this lemma this claim to show that to design
a polynomial time separation oracle for this for this linear program.

 So, that I give it as a homework. So, use max flow mean cut theorem to design a
polynomial time separation oracle ok. So, hence we can use ellipsoid method to solve this
linear program. Hence we can use the ellipsoid method to solve this LP in polynomial
time ok. So, let us stop thank you.

