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Lecture  27  :   3  Factor  Approximation  Algorithm  for  Prize  Collecting  Steiner  Tree

 Welcome in this lecture we will study the price collecting standard tree problem and we 
will see a constant factor approximation algorithm for it and we will use the technique of  
deterministic rounding of linear programs. So, let us begin. So, we are continuing the 
algorithm  design  framework  of  deterministic   rounding  of  linear  programs,  linear 
programming relaxation and our today's problem is price collecting standard tree. Before 
that let us recall what is the classical Steiner tree problem. We are given a graph as input.  
undirected  weighted  graph.

 G=(V , E) and cost on edges costs are positive and we are given set of set T of terminal 

vertices  T⊆V  and we need to compute a tree which contains T and of minimum edge 
weight. a minimum weight tree containing all vertices in T. The vertices in  V ∖T  are 
called Steiner vertices they are optional vertices it may be useful to use some Steiner 
vertices to connect the terminal vertices at lower cost. The vertices of V minus t are 
called   stainer  vertices  ok.

 So,  what  is  the  price  collecting stainer  tree?  It  is  an  extension or  generalization of  
classical stainer tree. again the input is undirected weighted graph.  G=(V , E) cost on 

edges.  and  there  are  certain  penalties.  So,  penalties  associated  with  each  vertex.

 So, unlike the classical standard tree problem, we do not need to connect all the some set  
of terminal vertices. It is like if we whichever vertices we connect are part of tree for 
those vertices we do not incur a penalty and for other vertices which we omit for those 
vertices we pay the penalty. So, that is the penalty function  π :V→R≥0 and this is the 

thing and a special this is the first special vertex called root  r∈V . What is the output? 
compute a treaty which contains r and minimizes the sum of the cost of the edges that we 
are using in T, E[T] is the edge set of T that the costs plus the sum of the penalties of the 
vertices  which  do  not  belong  to  T.

 V[T] is the vertex set of T is  π (v). So, why it is a generalization? So, in the classical 



Steiner tree problem if  we set  the penalty of  terminal  vertices to be infinity and the  
penalty of Steiner vertices to be 0, then if we if we set in this price collecting Steiner tree  
problem penalty of some vertices to be infinity and the other vertices to be 0, then this is  
the standard tree problem because whichever vertex has penalty infinity that must belong 
to the output T and whichever vertices have penalty 0 they can be omitted without any 
penalty. So, the classical  tenure tree problem is the same as the price collecting. standard  
tree problem where π (i) or π (v) is  infinity if this v belongs to the set of terminals in the 

standard  tree  problem  and  0  otherwise  ok.  So,  it  is  a  generalization.

 So, now, because the standard tree problem even the classical version is NP complete  
this problem is also NP complete. Next, what we will do? We will write an integer linear  
programming formulation of this problem. We relax the integrality constraints in that 
formulation to get a linear programming relaxation of this problem and then we will use 
deterministic rounding. So, that is the high level idea. So, let us begin with writing an 
integer  linear  programming  formulation  of  this  problem.

 So, we introduce  we have a variable xe for every edge e of this graph which will  take 

value 1 if  e  is  included in the output  tree.  We also have a variable for  each vertex,  
variable say  y v for every vertex  v∈G which will take value 1 if v is included in the 

output tree and 0 otherwise. Here also if the edge e is not included in the output then xe 

will take 0 otherwise. So, with this variables it is easy to write down the optimization 
function, we want to minimize the cost and plus the penalties of the vertices which are 
not  part  of  the  output  tree.

 So, minimize objective function. minimize the total cost of edges included. So,  e∈E 
ce xe. So, xe will be 1 if this edge is included in the output otherwise it will be 0. So, this 

is  the  total  cost  of  the  edges  included  in  the  output  tree  plus  for  all  vertex  v.

 So, let us call it say i∈V . Now  if I do not include i in the output tree then I will incur a 
penalty of π (i). So, this will be incurred only if y i is 0. So, I will write 1− y i. So, if y i is 

1  this  penalty  is  not  incurred.

 So, this is the optimization function we want to minimize next what we need we need to 
write the constraints. So, that xe and y i are forced to take the values that we intend them 

to take. So, the first is r this root vertex must be in the tree. So, let me write constraints  
So, yr must be equal to 1 and then what I want is whenever y i is 1 for any i if y i equal to 

1 there is yr I know yr is always equal to 1. I want to ensure that there exist a path  where 

all  the  edges  I  pick.

 Now, how do I encode this? So, one way to encode is if I look at all subset of vertices 



which contains r, but does not contain y and if I look at the edges with exactly one end 
point in S. at least one of the edges must be picked in my solution. So, for each i∈S so, 
for each i∈V  if  y i equal to 1, then what I want is then I want for all subset S⊆V ∖{i} this 

S should include should not include i and it should include r. at least one of the edges  
must be picked summation  e∈δ (S),  δ (S) is the set of edges having exactly one end 

point. in S formally that is all the edges  e∈E [G ] such that  E∩S this cardinality is 1.

 So, at least one of the edges must be picked. So, xe this should be greater than equal to 1 

if y i equal to 1 if y i equal to 0 we do not have any constraint. So, if I write this is greater 

than equal to y i. it may not be clear why if I ensure that for all such r-i cuts at least one 

edge is picked there that should ensure why that there exist an r to i path. So, that needs a 
proof  and  so,  let  us  prove  it  claim.

 there exists an r to i path if and only if  for all subset S⊆V ∖{i} r∈S summation xe at 

least 1 edge from δ (S) is picked proof. One direction is obvious that if there exist an r to 

i path that path must use at least one edge from δ (S) So, this direction  So, at least 1 edge 

from every delta s must be picked. So, this is obvious. Since any r to i path must pick  at  
least  one  edge  must  contain  at  least  one  edge  from  δ (S).

 for every  S⊆V ∖{i} and  r∈S. The other direction is follows from max flow mean cut 
theorem,  which  says  that  the  maximum flow from r  to  to  is  equal  to  the  minimum 
capacity of one cut. for all S⊆V ∖{i} r∈S at least one edge is picked from δ (S). then the 

size of minimum r-i cut is at least 1. one can send one unit of flow using the edges 
picked.

 there exists an r to i path. So, not only this proves that these constraints are enough, it 
shows  that  although  we  have  exponentially  many  constraints,  this  proof  gives  a 
polynomial  time  separation  oracle.  So,  what  is  the  final  linear  program?  Linear 

programming relaxation minimize  ∑e∈E
ce xe+∑i∈V

π (i)(1− y i) subject to summation 

what are the constraints that for all S⊆V ∖{i} and r∈S. at least one of the edge must be 
picked at least one of the x is must be 1. If  y i is 1 otherwise there is no constraint. So, 

greater  than  equal  to  y i and  yr equal  to  1.

 and all this x is and y is they are binary valued either they should take either 0 or 1. So,  
y i and xe belongs to {0 ,1} this is for all i∈V  and e∈E. So, this is the ILP formulation to 

get the linear programming relaxation we relax the integrality constraints. We replace this 
integrality constraints with for all i∈V ,e∈E 0≤ y i≤1 and 0≤xe≤1 ok. So, here we have 

exponentially many constraints, but you use this lemma this claim to show that to design 
a  polynomial  time  separation  oracle  for  this  for  this  linear  program.



 So,  that  I  give it  as  a  homework.  So,  use max flow mean cut  theorem to design a  
polynomial time separation oracle ok. So, hence we can use ellipsoid method to solve this 
linear program. Hence we can use the ellipsoid method  to solve this LP in polynomial 
time ok. So, let us stop thank you.


