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Lecture  23  :   An  APTAS  for  Bin  Packing  Contd.

 In the last lecture we have started seeing an EPTAS for bin packing problem and we will  
finish that idea. So, we have seen that it is enough to pack the large items either optimally 
or even approximately optimally to pack all items in approximately optimal number of  
bins. Recall the large items are defined by those items whose size is at least more than 
gamma and the small items are items which are whose size is less than gamma. So, now, 
we will see an algorithm to pack the large items in approximately optimal number of 
bins.  First  task  is  approximately  optimally  pack  large  items.

 So,  recall  large  items  are  items  item  i  is  large  if  ai≥γ .  And  the  idea  for  this 

approximately  optimal  packing  is  at  a  very  high  level  is  similar  to  the  dynamic 
programming algorithm for job scheduling. In the dynamic programming algorithm for 
job scheduling, we use rounding to  bound the number of different processing times of 
the jobs. Here also we will do something similar, but importantly different also to bound 
the  number  of  different  item sizes.  Here  the  idea  is  what  is  called  linear  grouping.

 So,  let  k  be  a  parameter  whose  value  we  will  decide  at  the  end  of  the  algorithm 
depending upon the requirement like gamma, gamma also its value we have not set yet 
gamma and k this will be set at the end of the algorithm. So, that our algorithm runs in 
polynomial time and it outputs a solution with size at most  (1+ϵ )×opt+1 number of 

bins. So, let k be on an integer parameter. So, by renaming the items we can assume that 
their sizes are monotonically non-increasing . We can assume without loss of generality 
by  renaming  the  items  that  1>a1≥a2≥a3≥…≥an.

 Now, what we do is we partition this items into buckets of size k. So, the first group is a1 

up to ak ak+1 up to a2k, a2k+1 up to a3 k and so on up to an. This is the first bucket, this is 

size k. this is the second bucket next k items, this is the third bucket next k items and so  
on. Unless k divides in the last bucket has items less than k in general it has items less 
than  equal  to  k.



 Now, what we do we  in the rounded down instance equivalent to the rounded down 
instance what we do we throw away the top k items a1 to ak and replace this ak+1 to a2k 

with the maximum ak+1, then the next item let us call it ak+1
’  which is same as ak+1, but the 

next item size ak+2
’  that is also ak+1, a2k

’  is also ak+1. That means, in each group of k items 

we are replacing every item with an item of maximum size in that group. So, this is the 
after changing the weights these sizes these are the this is how the top group of k items 

look  like.  So,  in  the  next  group  a2k+1
’  is  a2k+1.

 here in the next group the maximum size is a2k+1. So, we replace each item with another 

item of size a2k+1. and so on. This instance I am calling I the original instance for which I  

want to compute a packing and this instance I am calling I ’ the modified instance. What 

is the relationship between I and I ’? So, here is an important lemma that opt ( I )  is less 

than equal to opt ( I ’)+k  and greater than equal to opt ( I ’). So, let us prove this lemma and 

once we prove this lemma we will put suitable values of k and we will show how we can 

solve this instance in I ’ you see the number of different sizes are not too much it is it will 

be small we will see, but before that we prove this moreover any packing of  I ’ can be 
extended  to  obtain  a  packing   of  I  using  at  most  k  additional  bins.

 easy both are easy. So, first let us show that to show opt ( I ’) is less than equal to opt ( I ). 
What you do for that? Consider  any packing of I into say l bins. Now, in this packing 
you replace the i-th item with (k+i)-th item. in this packing we replace the i-th item of 

the instance i with the (k+i)th  item of I ’ and we claim that the resulting packing is valid 

because valid means the sum of sizes of all the items assigned to 1 bin that is less than 
equal  to  1.

 The resulting packing is valid this and through the last  items of last  bag that is not 

important  the  resulting  packing  is  valid  for  I ’.  packing  is  valid  since  now  we  are 

replacing the i-th item of instance I whose size is ai with the (i+k )-th item of I ’ this is for 

all  i∈[n−k ].  because  this  is  ai is  greater  than equal  to  ai+k
’  because  ai and  ai+k  to 

consecutive bag and ai+k
’  is the maximum i size of the bag where it belongs and, but that 

is  less  than equal  to  ai.  So,  we are replacing each item with a smaller  item and the 

resulting packing valid since it packs all items of I ’ and maybe something more. So, we 

have  that  opt ( I ’) is  less  than  equal  to  opt ( I ).

 the other direction is also simple. So, we start with a packing of opt ( I ’). Next to show 

opt ( I ) is less than equal to opt ( I ’)+k  . We start by the way for this proof the. indices of 



I ’ starts from ai+k here in the for i the indices start from 1 to n the items in i prime are 

indexed  with  k+1 to  n  ok.

 We start with any packing  of I ’ and the idea is if you look at ai
’ and ai ai

’ can only be 

bigger for i∈{k+1 ,…,n}. So, we replace ai
’ with ai. for all i∈{k+1 ,…,n} ok. This is a 

valid packing since ai
’ is greater than equal to ai for all i∈{k+1 ,…,n}. So, this is a valid 

packing that is why, but in instance I has k more items which we can pack individually in 
each we use k new bins and we can put a1 in the first new bin a2 in the second new bin 

and  ak in  the  k-th  new  bin.

 And hence we have proved that opt ( I ) is less than equal to opt ( I ’)+k  we can pack  the k 

extra items of i into k new bins. Hence, opt ( I )  is less than equal to opt ( I ’)+k . Moreover 

as you see that we can this part this direction we have started with a packing of I ’ and we 
have simply seen that item as the original item and we have extended that packing to a 
packing of I using at most k extra bins. Now we will say how we get an approximately 
optimal solution for this problem ok. So, for that we set Now, we set up various values of 
k  and  ϵ .

 The number of distinct pieces of items in I ’ is at most is ⌈ nk ⌉. see the number of groups 

is ⌈ nk ⌉ and we are throwing away the first group. So, the number of groups for the for I ’ 

which is same as the number of distinct items is at most floor of  ⌈ nk ⌉. which is  
n
k
−1 

because we are throwing away the first group which is at most  
n
k

 ok. And now we set 

since  So, we set γ  to be 
ϵ
2

 recall in last lecture we have discussed that we can if we can 

pack the large items into l bins and then we can if we can pack large items into l bins,  

then  we  can  pack  all  items  in  max{l , 11−γ S IZE ( I )+1} bins.

 Now, we discussed that  
1
1−γ

S IZE ( I )+1 ,  S IZE ( I )≤opt . So, this is  
1
1−γ

opt ( I )+1. 

Now  we  want  to  set  γ .  So,  that  this  is  less  than  equal  to  (1+ϵ )×opt ( I )+1.

 So,  set γ . Now, you can check that if I set γ  to be equal to 
ϵ
2

, then this is enough because 



1

1− ϵ
2

 is less than equal to 1+ϵ , this you can prove using elementary calculus ok good. 

that is why we put if γ  equal to 
ϵ
2

. So, the number of large items in I we do not have any 

small item n is small items. So, S IZE ( I ) is at least because we are setting γ  to be 
ϵ
2

 at 

least  
ϵ
2
×n because  size  of  each  item  is  at  least  

ϵ
2

.

 So, if we k to be floor of  ϵ  of  S IZE ( I ), then we see that  
n
k

 which is the number of 

maximum number of distinct items in the after doing the linear grouping in the round 

down instance  I ’ is  less than equal to  
2n

ϵ×S IZE ( I )
 because k is  this.  So,  this is  and 

S IZE ( I ) is greater than equal to 
ϵ
2
×n. So, this is less than equal to 

4

ϵ 2
. So, here we are 

using the fact that floor of any α  is any real number α  is greater than 
α
2

 when α  is greater 

than equal to 1. So, there are so, we assume  that ϵ×S IZE ( I ) is greater than equal to 1 

since otherwise the number of items is at most 

1
ϵ
ϵ
2

 because S IZE ( I ) is if it is less than 1 

then  sum  of  the  sizes  is  at  most  
1
ϵ

 and  each  size  of  every  item  is  at  least  
ϵ
2

.

 So,  which is   
2

ϵ 2
 and because we can have only this much items we can apply the 

dynamic programming algorithm. to solve I ’ optimally. Hence, after linear grouping  we 
are left  with constantly many constantly many pieces which we can solve optimally. 
Hence what  we have shown is  this  theorem that  for  any  ϵ  greater  than 0 there  is  a 
assuming ϵ  is constant that packs items into at most (1+ϵ )×opt+1 bins. So, how do you 

prove  this?  Proof.

 So, we set k to be less than ⌊ϵ×S IZE ( I )⌋. Now, there are two cases if k is greater than 

equal to 1, then we can solve this part after the round down instance optimally and then 
we can use this result to get a packing with 1+opt ( I ) bins otherwise we have. So, this 

case is done if k is otherwise k is less than equal to 1 and then we again find an optimal  
packing after the round down instance and get this (1+ϵ )×opt+1 bins with this bins we 

pack all the items ok. So, let us stop here. Thank you.


