
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 05

Lecture 22

Lecture 22 : An APTAS for Bin Packing

 Welcome, in the last lecture we have seen a polynomial time approximation scheme for
scheduling jobs on multiple identical machines. So, today we will discuss another very
important problem in computer science which is called bin packing and we have seen an
approximation algorithm for bin packing. So, today's topic is bin packing. So, what is the
input? Input are n items with sizes a1 , a2 ,…,an where each ai is greater than 0 and less

than 1 and the goal is to partition these n items into minimum number of parts. So, that
the sum of the sizes of the items in any part is at most 1. So, you can think of these items
are sizes and there are bins or which with capacity 1 and I want to use minimum number
of bins to pack all these items.

 So, this problem is known to be NP complete even for checking whether it is possible to
pack all the items into 2 bins theorem. computing if given set of items can be packed. into
2 bins is NP complete. There is a very easy reduction from the partition problem and you
can take it as a homework.

 reduction from the partition problem, details are homework. So, what is partition
problem? Let me tell you partition problem we are given n items again with their sizes.
say b1 ,…,bn just want all bi's greater than 0 for all i∈[n]. We do not need all bi's to be

strictly less than 1, they can be more than 1 also and the goal is to check if there exists a
subset I of items such that. summation bi the sum of the sizes of the items in set I is same

as the sum of the sizes of the items in set [n]∖ I .

 So, this is the partition problem you start with a partition problem any arbitrary instance
of it and reduce an equivalent instance of knapsack thereby showing that the knapsack
problem even in the special case whether 2 bins suffice or not is NP complete. So,
immediate corollary from this theorem is and partition problem is known to be NP An

immediate corollary of this theorem is that there does not exist any better than
3
2

 factor

approximation algorithm for bin packing theorem. There does not exist any ρ factor

approximation algorithm for bin packing. for any ρ< 3
2

. Because we have seen this sort of

proof again in this course that if there exist a better than
3
2

 factor approximation

algorithm for bin packing, then we can use this algorithm to solve this instance, we can
use that algorithm to compute if a given instance of bin packing can be can if the if the if
a given set of items in a bin packing instance can be packed in 2 bins or not.

 but in bin packing we will show something remarkable which is called asymptotic
PTAS. So, let us first define it what is APTAS or asymptotic asymptotic polynomial time
approximation scheme APTAS in short. What is it? An APTAS is a family of algorithms
ϵ parameterized by ϵ for every ϵ greater than 0 like PTAS or FPTAS and a constant c
such that the algorithm A ϵ returns and returns are (1+ϵ)×opt+c. approximate solution or

returns a solution of value at most (1+ϵ)×opt+c this is for minimization problems. So,

what we will see that for knapsack there exist an EPTAS.

 So, this is the theorem that we will prove now and this runs in time in time the running

time is like PTAS nO(f (ϵ)). So, for every constant epsilon this is a polynomial time
algorithm ok. So, for every epsilon greater than 0 there exists an algorithm for knapsack

for bin packing. which packs the items into at most (1+ϵ)×opt+1 bins in time nO(f (ϵ)).

So, we will see what is the exact running And the idea is we will use the our algorithm
the PTAS for the job scheduling and the high level idea is also same that we will divide
the items into small item and large item and focus only on large items.

 So, for a parameter γ whose value we will decide at the end of the algorithm. We call
item i large i∈[n] if ai≥γ . else we call ai we call the item i small. So, here is an

important lemma that any packing of large items into l bins can be extended. into

extended to packing of all items into max{l , 11−γ S IZE (I)} bins where SIZE(I) is the

sum of the sizes of all the items in the instance ok.

 proof. So, we start with any packing of large items into l bins and then we try to greedily
pack all the items all the remaining items which are small into the into the bins. What do
you mean by greedily pack? We pick small item in every say item j in every iteration of
our greedy algorithm. If there is a bin with free space a j, then we put item j on that bin.

Otherwise we put j into a new bin. So, that is the case.

 So, two things can happen, if we start this our greedy algorithm from the packing of
large items into l bins and every time I pick a small item, if it is the case that we do not
need to open a new bin and pack all small items, then in that case we are able to pack all

items into l bins. The other case when at least one new bin is opened, there we will show

that the number of bins used is at most
1
1−γ

×S IZE (I). So, if the greedy algorithm does

not open any new bin, then we use we pack all items into l bins. On the other hand, if a
new bin is opened then j be or then let k be the iteration when the last new bin is opened.
Let j be the small job picked in iteration k.

 then its size is a j the size of job j which is less than gamma and that item is not fit in is

not fit in any of the existing bins. That means, that all the existing bins must be at least
1−γ full actually more than 1−γ full of the bins, none of the existing bins have free
space at least γ . Then we observe that none of the existing bins has free space at least γ
ok. Let alg be the number of bins used by the algorithm.

 Then at least alg−1 bins are more than 1−γ full, then look at alg−1 each of these bins
except the last bin opened each of the existing bins they are kept the size some of the
sizes of the items in this bins each of this bin is at least 1−γ ok. This should be less than
equal to SIZE(I). because SIZE(I) is the sum of the sizes of all the items. From here we

get alg−1 is less than equal to
1
1−γ

×S IZE (I), hence alg is less than equal to

1
1−γ

×S IZE (I)+1 ok. And before we have shown that in this case alg is at most l.

 So, we have alg is less than equal to max{l , 11−γ S IZE (I)}+1. Now, see that SIZE(I) is

a lower bound on opt minimum number of bins. So, this is also less than equal to
1
1−γ

×opt (I)+1. So, we will use this crucially. So, there also we have seen that if we are

able to pack the large items in optimal or approximately optimal number of bins, then by
applying this greedy algorithm from the from the packing of large items we will get an
approximately optimal solution.

 if we are able to pack large items optimally. or approximately optimally, then our greedy
algorithm outputs an approximately optimal packing. So, we will see how this idea is
implemented in the next lecture. Thank you.

