
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 03

Lecture 12

Lecture 12 : Greedy Algorithm for Scheduling Jobs on Multiple Identical Machines

 Welcome. So, in the last class we have seen a (2−
1
m

) factor approximation algorithm

for ah scheduling jobs on multiple identical machines and we have used the local search
based method for designing that algorithm. So, in this class we will see a greedy
algorithm for designing ah this scheduling. So, a greedy algorithm to schedule jobs on
multiple identical machines. So, we will design and we will discuss an algorithm which is
called list scheduling algorithm. So, we list the jobs arbitrarily let it be j1 ,…, jn and in
each iteration I pick a job and assign it to the least heavy machine, least busy machine.

 In each iteration initially all jobs are unassigned in each iteration we pick the next job
and assign it to the least heavy, least loaded machine. Clearly this is a polynomial time
algorithm, we first claim that this is a two factor approximation algorithm. The above

greedy algorithm has an approximation factor of at most (2−
1
m

). And the proof is very

easy it is only the observation that if we start the local search algorithm with the output of
the greedy algorithm, the local search algorithm terminates in in one iteration it does not
make any local move.

 If we start the local search algorithm, local search based algorithm for job scheduling
with the output of the above greedy algorithm, then the local search based algorithm
does not make any local move and terminates immediately. why this is so? Because for
each machine look at the job which is running at the last to see this for each machine say
machine j consider the job i j that is executed last on that machine. Now, the greedy

algorithm assign this job i j to that machine means that all other machine are as where are

as busy as that machine j at that time when i j has started. So, since the greedy algorithm

assigned job i j to machine j, no machine was available at time C ij− pij−1 at time before
this ok. And in subsequent iterations other jobs got assigned to other machines in

subsequent iterations of the greedy algorithm only increases the load of other machines.

 Hence all machine are busy. at time C ij− pij−1. This implies that there is no local move

for from for the job i j. This implies there is no local move available from machine M j.
ok and because now the algorithm terminates the local search based algorithm terminates
and we have already seen that the approximation ratio of the local search based algorithm

is at most (2−
1
m

) it follows that the approximation ratio of this greedy algorithm is also

at most (2−
1
m

).

 Hence the approximation ratio of greedy algorithm is at most (2−
1
m

) ok. So, this is the

list scheduling algorithm. Next we will refine this list scheduling algorithm instead of
picking or running this algorithm for arbitrary list, we will pick a specific list which is the
non increasing order of the jobs. So, instead of using arbitrary list for the greedy
algorithm we sort the jobs in non increasing order of their processing time and run the
least scheduling algorithm. using it ok.

 Now, we show that this has an approximation ratio of at most 4 by 3. So, here is a
theorem. So, this is called the longest processing rule longest processing time rule. So,
this algorithm is called the longest processing time rule. So, we are processing the
longest jobs first.

 So, there is a theorem the longest processing
4
3

 approximation algorithm for scheduling

jobs. on identical machines to minimize makespan proof. So, it is a proof by
contradiction. So, suppose not suppose not then there exists A counter example showing
that the makespan of the schedule output by the algorithm is more than 4 third times the
optimum makespan. There exists a counter example showing that the makespan of the

schedule output by the algorithm is more than
4
3

 times the optimal makespan.

 So, by renaming the jobs we can assume without loss of generality. So, consider such a
counterexample by renaming the jobs we can assume without loss of generality that

p1≥ p2≥…≥ pn

Next we say that we can assume without loss of generality that pn is the last job. So, we

can also assume without loss of generality that pn is the last job to finish why suppose

not suppose pl is the last job if not then supposing pl supposing pl be the last job to finish

we can delete.

 the jobs J l+1 ,…, J n and still the counterexample remains valid. this is so, because this is

so, because deleting J l+1 ,…, J n keeps ALG unchanged but possibly decreasing

opportunity. So, if already with jobs J l ,…, J n ALG is greater than
4
3

 times OPT and if I

delete the jobs J l ,…, J n then ALG remains same, but OPT can decrease potentially
because deleting jobs can potentially decrease OPT. So, the in the new instance also ALG

is greater than
4
3

 times OPT. So, we have assumed without loss of generality that J n is

the last job to finish ok.

 Now, we say that if pn is less than equal to
opt
3

, then by the analysis of the local search

algorithm, then by the analysis of the local search based algorithm we have ALG. If you

recall ALG=(1m∑ pi)+ pn and both of them are is less than equal to opt. is less than

equal to opt and this if this pn≤
opt
3

 under this assumption if this is the case. Then we

have this is then ALG is less than equal to
4
3

 opt ok. So, but this is a counter example, but

we know that in this example ALG is greater than
4
3

 opt.

 However, since it is the instance is a counter example, we have assumed that ALG is

greater than
4
3

 opt. So, alg is so, pn cannot be less than
opt
3

 because it is a counter

example, hence pn is greater than
opt
3

. but in this case observe that in any optimal

schedule any machine cannot process more than 2 jobs. Then in the optimal schedule no
machine process says more than 2 jobs ok, but it turns out that under this assumption this
problem is polynomial time solvable ok. So, this this shows that this counter examples
can only be polynomial time solvable.

 and and in particular the greedy algorithm it is more the greedy algorithm outputs the
optimal solution under this assumption the greedy algorithm outputs the optimal solution
and hence this there cannot exist no such counter example. So, here is a lemma which I
leave it as a homework for you to prove not difficult to prove just some simple case
analysis that for any input if the processing time if the processing time of every job is

more than
opt
3

. the greedy algorithm outputs an optimal solution. Hence, no count no

such counter example can which in turn shows that the approximation factor of the
greedy algorithm is at most fourth third which proves the claim ok.

 Let us stop here. Thank you.

