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 Welcome. So, in the last class we have seen a greedy algorithm for k center problem and  
we have seen its approximation ratio is 2. So, in today's class we will see local search 
heuristics and greedy algorithms for designing approximation algorithms and for that we 
will  use  the  example  of  scheduling  jobs  in  identical  parallel  machines.  So,  today's 
problem is scheduling jobs on identical parallel machines. So, what is input? n jobs with 
processing  times  p1 , p2 ,…, pn and  we  have  m  identical  machines.

 ok we have m identical machines and what is the goal. So, we look at the completion  
times of all the jobs and we want to minimize the maximum completion time. So, let C j 

be the completion  time of job j in a schedule and define  Cmax=max j=1
n C j, this is the 

maximum completion time ok. The goal or the goal is to compute a schedule  which 
minimizes  Cmax.  We assume non-preemptive scheduling that means, jobs once started 
should  be  it  should  be  allowed  to  run  continuously  till  it  finishes.  All  the  jobs  are  
available at time 0, this is unlike the scheduling jobs on a single machine. So, all the jobs 
are available time 0, there are no deadline for the jobs, but finish jobs as quickly as 
possible.  This  Cmax is  also  called  make  span  of  a  schedule.

 makespan of a schedule or maximum load of any machine. So, this problem can also be 
viewed from load balancing point of view, we want to minimize the maximum load of 
any machine. So, here we begin with local search based algorithm. Recall what is local  
search  based  algorithm?  The  framework  is  we  start  with  any  arbitrary  solution  and 
iteratively improve the solution by local moves till we can and once there is no local 
move which can improve the solution we output the solution. So, here also we start  with 
an  arbitrary  schedule  of  this  n  jobs  into  m  machines.

 Now, we look at the job we consider a job that finishes last. be a job that finishes last and 
check is  it  possible to move that  lth job to some machine ah which reduces the the 
maximum load and this ah  in particular suppose this is some machine M here this there 



are various jobs are running and the last job is the lth job which finishes at time C l. Now, 
it makes sense to move this job to some machine which finishes processing all its job 
before the start of the lth job. So, if there is a machine which is idle that means, it has 
finished all its assigned job  at time. What is this time? This time is  C l−pl,  pl is the 

processing  time  of  l-th  job  at  times  earlier  than  C l−pl.

 we move if there is a machine M ’, we move job l to machine M ' ok. So, that is what we 
do and you see by that we are between M and M prime we are if we just consider M and 

M ' we are reducing the maximum load. It  may still  be possible that there is another  

machine which who is occupied processing jobs till C l time. But, in that case also we are 
making  progress  in  the  sense  that  we  are  reducing  the  number  of  machines  with 
maximum load with the number of machines who are busy till C l. So, what you observe 
is that each local move can only possibly decrease the make span the current make span 
and if the make span remains unchanged, then the number of machines  with load with 
maximum  load  decreases  ok.

 So, now, we show that these are two factor approximation algorithm theorem. this local 
search algorithm has an approximation factor  of 2 proof. So, when does the algorithm 
terminates?  The  algorithm  terminates  when  there  is  no  local   So,  in  the  algorithm 
terminates. So, let C l be the make span of the schedule  output by the algorithm ok. So, 

we  break  the  time  into  two  parts  one  is  from  0  to  C l−pl.

 So, here are various machines  and there is one machine which is which is occupied that 
could be more than one machine which is occupied till time  C l just pick any one job 

which is which finishes at time C l and let pl be the processing time of that job. So, this is 

from  this is C l−pl. So, since no local move was available that is why the algorithm has 

terminated. all the machines are busy in the time interval 0 to  C l−pl ok. Now, what is 

ALG? ALG is  C l this is the make span of the schedule output by the algorithm this  C l 
you  can  write  it  as.

 So, define  Sl to be  C l−pl this time interval. So, this is  Sl+ pl. Now, we will see two 

lower bounds. So, since all machines  was busy from 0 to Sl executing jobs in  let us this 

jobs called  {J 1 ,…, J n}∖{J l}, l-th job because this l-th job  J l is running here. We have 

∑i∈[n] , i≠l
pi  this  is  greater  than  equal  to  m×Sl and  any  algorithm in  particular  the 

optimal  schedule  must  take  
∑i

pi
m

 time.



 So, let clearly  opt≥
∑i

pi
m

. So, opt is greater than equal to the average time that any 

machine with needs to run is this and this one and also opt is. greater than equal to any 
jobs processing time in particular the processing term of l-th job  pl. So, now, use this 

here.  So,  from  here  we  can  write  Sl≤
1
m∑i∈[n] , i≠l

pi.

 Now, from here let us come ALG=Sl+ pl≤
1
m
∑i∈[n] , i≠l

pi+ pl. Now, this is by rewriting 

1
m
∑i∈[n]

pi+(1− 1
m

) pl, we add and subtract 
pl
m

. Now, this sum is less than equal to opt 

pl≤opt . So, this is less than equal to opt, this is less than equal to opt. So, we have this is  

less  than  equal  to   opt+(1− 1
m

)opt  which  is  (2− 1
m

)opt  ok.

 So, this is better than two factor approximation algorithm. Now, we have one problem 
here what is the running time of this algorithm? as described the algorithm runs in pseudo 
polynomial time  So, let us argue we start with a Cmax,  we start with a with any makespan 

and either in after every local move either the max span drops by at least 1 or if it does 
not drop the number of machines which is maximally loaded which is highest which has 
highest  load by 1.  So,  we can say after  n  local  moves after  every  n+1 local  moves 
makespan drops by at least 1. And the maximum possible make span to begin with could 

be ∑ pi total processing times. So, the running time the number of iterations could be as 

high  as  O(n⋅∑ pi).

 Here you see the running time depends on the value of the processing times, but the  
input is at this numbers and this numbers are encoded in binary. So, to represent the value 

say pi we need only log pi bits. So, this running time of O(n⋅∑ pi) this is not polynomial 

of the input size because the input size is  O(n⋅∑ log pi). So, this is not a polynomial 

time  algorithm  as  described  these  algorithms  are  called  pseudo  polynomial  time 
algorithms which is polynomial of the values of the numbers. So, we use a very simple 
trick  to  convert  it  to  a  polynomial  time  algorithm.

 Here you see we are while deciding the local move we are not selecting which machine  
to move. If there are multiple machines who are who is available in the time slot before  
C l−pl I move to any machine. So, a greedy choice here is to move to a machine which is 

least loaded. So, instead of  moving the job to any machine which is available before 
C l−pl, we move the job to the to the least busy machine to R it may not be unique least  

busy  machine.



 That means, if there are we move the jobs to the least busy machine if it is available 
before  C l−pl ok. So, whichever machine is available earliest we move that job to that 

machine. Now, with this change we can show that this is a polynomial time algorithm. 
So, here is a claim  that each job is moved at most once. So, if I prove this then the 
number of iterations is n at most n and hence the running time is big of n times in each 
iteration  can  be  executed  in  polynomial  time.

 So, the overall running time is polynomial time. So, it is the proof by contradiction. So, 
proof suppose not  then there exists a job say j which is moved to M 1 and then M 2 ok. So, 

we  will  use  this  is  the  fact  that  the  make  span  cannot  increase.

 So, let  C1 be the make span of the schedule just before the job j is moved to M 1. At that 

time at that time the load of M 1 be  C1 this is just before the job M 1 moves to C1 moves 

to machine M 1 the job j moves to machine M 1. So, after moving the load of machine M 1 

becomes C1 plus p j ok. So, now the next time  the job moves to moves from M 1 to M 2, 

the load of M 2  just before j moves to M 2 be C2, but because it is moved  because job j is 

moved  we  have  C2.

 less than C1. Recall a job is moved from one machine to another only if it is it the last 

job when it  is started that job is at that time another machine was available, but this  
contradicts our fact that the make span is non decreasing. and the greedy choice this 
contradicts the greedy choice ok. So, this shows that every job can move at most once 
and hence it is a polynomial type algorithm ok. So, let us stop here.


