
Lecture 01 : Overview of NP-completeness and How to Tackle It.

Welcome to this first lecture of Approximation Algorithm Design course. Let me give a brief 
overview of what we will study in this course. In today's world we know that we use 
computer programs or apps for various decision making in daily life for example, finding  
the route to take when we want to go from one city to another or maybe we want apps to 
help us recommend which news or news item we would like to see or which items we want 
to buy from various other applications like scheduling classes in a large institute like IITs 
and so on. But it often turns out that most of the problems are hard. Now, what do you mean
by hard? So, let us formalize. So, broadly this area is called discrete optimization where the 
goal is to maximize or minimize some function over discrete space ok.

Once we have a discrete optimization problem we want to have an efficient algorithm. So, 
we want an  efficient algorithm for discrete  optimization problems. Now, it turns out that 
for all problems do not admit an efficient algorithm. By efficient we mean run time is 
polynomial in the input size. So, there is a complexity class called P is the set of problems 
that admit ah polynomial  time algorithm.

So, here we are slightly abusing the notation because when we define complexity classes 
like P, NP we deal with decision version of the problem. So, the decision version of the 
corresponding optimization problem which admits a polynomial time algorithm. That set of 
problems is denoted by P and there is another famous class NP  loosely speaking the set of 
problems which has a polynomial time verifiable certificate for every yes instance. You see 
in the definition of NP we are crucially using the fact that it is a decision version the answer 
is either yes or no. It is typically believed we believe  that P is not equal to NP.

What are some examples of ah problems which are in P? For example, in the 2SAT problem 
we are given bunch of CNF clauses each CNF clause has exactly two literals, and we need to 
find out whether there exists an assignment to this variables which satisfy all clauses. That 
is 2SAT. Then we have shortest path with no negative weight cycles ok. Then we have 
matching. Given a graph G compute the maximum matching, what is the matching? It is a set
of edges where no two edge share any end point. So, these are all problems and so on many 
more these problems admit polynomial time algorithm and hence this problem belongs to P 
the decision version. Similarly, examples of problems NP complete problems ok. So, NP 
complete class is the set of problems which are hardest in the class NP of course, every 
problem in P belongs to NP because P is a subset of NP.

The NP complete class is the set of all problems in NP which are hardest in the sense that if 
any one of them admits any polynomial time algorithm, then every problem in NP admits a 
polynomial time algorithm. So, it is typically believed that P≠NP . So, to show
P=NP  it is enough to show that some NP-complete problem admits a polynomial time 

algorithm. So, what are some examples? it is the 3 satisfiability problem where we are given 
n Boolean variables and clauses m clauses each clause is an or of 3 literals and we need to 



find out whether there exist an assignment to this Boolean variables which satisfy all these 
clauses. Then we have longest path. Given a graph G and 2 vertices x and y, find the longest 
path between x and y, then 3 dimensional matching and so on. So, it turns out that most of 
the real world problems are NP complete. The examples of real world problems which are 
not NP complete which belongs to P are few. So, in this course we will design tools to tackle 
NP complete problems. Now, how do we typically tackle NP complete problems? way outs 
from NP completeness. For any problem which is NP complete there are 3 things which you 
cannot get simultaneously.

So, what are the 3 things? First one is  finding an optimal solution, then running in 
polynomial time. And 3 is works for all instances ok. So, need to leave  at least one unless
P=NP  ok, which we consider to be unlikely. So, what are the approaches typically? The 

first approach is heuristics. So, can we have algorithms which work well in practice, but 
have no probable guarantee.

Algorithms which seem to. work well in practice and take small amount of time to execute 

ok. So, examples of such approaches are genetic algorithms, A∗  search etc.

The problem with this approach is that it does not come with a guarantee. So, for a new 
instance it may happen that the algorithm either takes too long time or it does not give good
solution, close to optimal solution. So, drawback  does not have provable guarantee on both 
performance on both quality of solution  and computation time. So, some heuristics may 
have guarantee on one of them may be it transfers, but it may not always give good solution 

for example, genetic algorithms or some heuristic like A∗  may guarantee quality of 
solution it will find the optimal solution, but the runtime on some instances it may be 
prohibitive. So, these are the is the first approach.

 The second approach is fixed parameter tractability. what is it? So, here you designate a 
parameter call k and design an algorithm  which runs in time some function of k times 
polynomial in input size. So, the idea is if the parameter is small then your algorithm 
effectively runs in polynomial time and design algorithm which runs in polynomial time and
always output a correct solution. The third approach which we will see in this course is 
approximation algorithm. Here the goal is to design an algorithm which runs in polynomial 
time and outputs are an approximately optimal solution with provable guarantee.

 So, here definition what is the definition of an approximation factor? This is the provable 
guarantee approximation factor. So, an α  approximation algorithm for a minimization 
problem. Alternatively maximization is a polynomial time  algorithm which outputs a 
solution whose value is at most  for minimization and for maximization at least respectively 
alpha times the value of an optimal solution. So, for minimization problem α  will be 
greater than 1 and for maximization problem α  will be less than 1. α  is greater than 
equal to 1 and for maximization problem α  is less than equal to 1 ok.



 Now and as α  goes towards 1, we have the better solution it is more close to optimal. 
So, how close we can go? So, the one target is what is called to have a polynomial time 
approximation scheme. petas for short. So, what is a PTAS? It is a family of algorithms
Aϵ  for every ϵ  greater than 0, where Aϵ  outputs or 1+ϵ   approximate 

solution for minimization problems and  1−ϵ  approximate solution for maximization 

problems. and runs in time nf (ϵ) .

 So, for every constant ϵ  the runtime is polynomial time and this is the fixed this is the 
polynomial time approximation scheme or PTAS for short. Now, there are some problems 
which admits PTAS and there is another thing is called FPTAS fully polynomial time  
approximation scheme. It is also a family of algorithms Aϵ   ϵ  greater than 0 and it is a
1±ϵ  approximation algorithm depending on whether it is a maximization problem or 

minimization problem. Approximate solution in time polynomial in input size and 
1
ϵ  ok. 

So, examples of problems in peters for example, Euclidean travelling salesman problem 
admits a PTAS.

 On the other hand Knapsack problem admits an FPTAS. So, we will continue our study of 
approximation algorithm in the next class. So, let us stop


