
Algorithms for Protein Modelling and Engineering
Professor. Pralay Mitra

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture No. 15
Genetic Algorithm (GA) for Surface Comparison

Welcome back, in this lecture, we will be focusing on another technique, which is completely

different from the brute force technique or the geometric hashing-based technique that we

discussed in the past weeks. This week we focus on the genetic algorithm for surface

comparison.

(Refer to Slide Time: 0:40)



The concept you will cover is the genetic algorithm. We will not go into details, we will

discuss this genetic algorithm only in the context of surface matching.

(Refer to Slide Time: 0:57)

This genetic algorithm concept was developed by borrowing the concept of Darwinian

evolution. For computation-intensive optimization problems, where the deterministic

algorithms may not provide satisfactory solutions, non-deterministic algorithms like a genetic

algorithm which is also in short call as the GA, attempt to mimic the process of Darwinian

evolution to find the good, but not necessarily optimal solution. I would like to highlight that

it is a non-deterministic algorithm. Next, it mimics the process of Darwinism evolution for

finding the good, but not necessarily optimal solution, which means that optimality is not

guaranteed, but sometimes it can provide you a good solution. If you are utilizing a genetic

algorithm, then, sometimes you will get the good but, not necessarily the optimal solution.

That is why it is better to pick a list of probable solutions instead of one and from there using

another level of filtering or another set of verification, you can identify the good solutions or

better solutions compared to this genetic algorithm technique.

(Refer to Slide Time: 2:45)



The genetic algorithm (GA) generates the translations and rotations of the query protein

surface relative to the target protein surface which was held static. The same concept that we

used for the brute force algorithm and geometric hashing technique. In the case of brute

force, we decided one has to be static no change there. Another is the mobile. Usually for the

computational advantage, we consider the smaller among these two is considered as a mobile

molecule, but if both of them are of the same size, then arbitrarily you can choose one to be

static and the other one will be mobile. The mobile molecule will rotate, and translate to

generate several orientations.

For geometric hashing, we pick one for the offline calculation, that will generate the model

and the basis points and that information will be stored in a two-dimensional hash bin. During

the recognition phase, the voting will take place. Also for GA or genetic algorithm, translate

and rotate the query protein surface related to the target protein surface, which was held

static.

As of now, we are mentioning the protein surface. Now what kind of surface representation

we did not mention? Shortly we will see this surface representation is the dense surface

representation for better fitment and that is the Connelly surface that is used using Connolly

mess surface calculation (lecture 14). We introduced the molecular surface and discussed in

detail what is the difference between the accessible surface area and Connolly surface area

which is computed by the summation of the contact area plus the re-entrant surface.

After generating the translations, and the different orientations using the translation and

rotation, you need to apply a fitness function. That is the important part of any GA or genetic

algorithm - the development of a fitness function to determine the degree of overlap and

similarity between the rotated query surface and the target surface. This way it is similar to



the previous one. What are the similarities and dissimilarities between three different

techniques - GA, geometric hashing, and the brute force technique?

After the generation phase, you need to score them. Also, you remember it can be integrated

scoring or edge scoring. During the generation, you can score and consider whether this

orientation is going to stay or go. I mean accepted or rejected or it can be considered or it can

be eliminated or you can generate all the possibilities and then score them to check how many

of them will retain.

Now, between the query and the target surface, the query protein surface was free to be

moved from one position to any position within the bounds of the previously defined rate and

both proteins are considered to be entirely rigid. The advantage is purely for the computation

when the smaller molecule is considered as the mobile molecule.

Next, you design a steady state with no duplicate GA, so there are a lot of variations of the

GA. Usually, this steady state with no duplicate GA is used for this kind of generation phase

for this particular problem. Use an integer string chromosome as a data structure.

For this fitness function, you are matching the surface. First of all, it is the geometric feature,

which you are trying to match. For enzyme-substrate binding, antigen-antibody, or other

protein molecule binding, it is said that, whenever two protein molecules are interacting or

are matching, then the surface should match. And there should be a kind of lock and key

mechanism. Again lock and key mechanism is more successful in the enzyme-inhibitor or

enzyme-substrate, but for the antigen-antibody or other protein molecules or protein and

small molecule also you cannot rule out the geometric fitting or matching. For the fitting, the

geometric feature will come into play along with the physicochemical information. In the

Journal of molecular biology, Gabb et. al published one such work where the biochemical

information is combined with the geometric information.

Then you will get a better matching or fitting and you can prune out or you can remove more

false positive cases compared to if you considered either of them. All these are

physicochemical or only geometric and I believe that you can understand also it is true. For

this particular problem, we are using an integer string chromosome as a data structure. The

good news is that, since it is an integer, you can go for an integer calculation rather than a

floating point calculation which is a bit costly on the computer. Although at the programmer's

level, you may not feel that.



(Refer to Slide Time: 9:26)

Since the concept is borrowed from Darwin's evolution, the keyword chromosome is being

used, but you can consider it as a fingerprint that contains the feature information. The data

structure is an integer in a population that contains six elements corresponding to the six

degrees of freedom (3 rotation+3 translation). It is necessary to completely move one rigid

body related to another.

Randomly generate an initial population of chromosomes to transform query protein surface,

which was first translated within the grid surrounding the target and then rotated about the

axis centered on its center of gravity. To generate the initial population, the chromosome

values have been created randomly. Hence, a chromosome is an integer data structure and in

that data structure, 3 translation and 3 rotation information are incorporated. We know by this

time that if we have 3 translation and 3 rotation information which means, along the x-axis

along the y-axis along the z-axis about the x-axis about the y-axis about the z-axis, then I can

get the transformation matrix for transforming one protein molecule from one position to

another position.

To generate the initial population, randomly populate that chromosome, which will give some

random transformation. A random number of translations and rotation or random

transformation is given, which was translated within the grid surrounding. Now for each such

situation, you evaluate the fitness function of the GA to test the efficacy of the individual

chromosome. Initially, you are starting with the random but as the simulation progresses, then

it will not be random. However, this evaluation of the fitness function will always take place.

In the beginning, when it’s random, you will see a lot of situations will be ruled out, but still,

few are supposed to be there. That’s why during the random number generation you should



be careful about using a proper random number or if not then at least some pseudo-random

number (PRN).

We will see in detail when we will go to the Monte Carlo simulation or a replica exchange

Monte Carlo simulation that there is a role for this random number generation. If it is not

sufficiently random, then there may be some biases and because of that bias, a result may

vary a lot. That’s why extra care should be taken when you are randomly generating an initial

population.

Sometimes the inbuilt functions may not be sufficient for generating the random number. I

am talking about the implementation - whatever may be the language. You have to tweak it

sometimes to make it more random so that the pattern occurs at a large interval and you are

within a safe region.

Evaluate the fitness function of the GA to test the efficacy of the individual chromosomes.

The chromosome that produced the better solution is given a higher fitness and vice versa.

You are selecting based on that fitness function that is more probable, as we mentioned in the

definition part of this GA. It may not give you the optimal solution, but a good solution, and

we are looking for that good solution using this technique.

(Refer to Slide Time: 13:40)

Next, run a series of cycles in GA, where at each iteration a subset of numbers of the existing

population is replaced with an equal number of new numbers. When these new numbers are

being introduced, you make sure that there is a variation in that one so that you can pick

different unbiased possibilities among them.



Subsequently, evaluate the fitness of the new members aiming to increase the average fitness

of the population and hence move towards the optimal solution to the problem. We are trying

to reach the optimal solution, but it may not be guaranteed always. The replacement of

population members was controlled by the use of three genetic operators, that is parental

selection, crossover, and mutation. These three concepts again are taken from evolutionary

biology. The parental selection process, then crossing over of the chromosomes, so that some

part of the previous one is coming to the next and mutations. Hence, not all the three

members, I mean 3 translations then 3 rotations you are going to change but, selectively you

are changing and during the selection process all 6 may be changed, but starting with one.

Randomly you choose and change, randomly you choose and change that way you go for

some mutation.

(Refer to Slide Time: 15:19)

It completes the entire process. To summarize that we define one fitness function and that

fitness function evaluated the degree of similarity between the target and query surface after

the transformations encoded by chromosome have been applied. Now, this fitness function is

at the core, based upon the goodness of your design of this fitness function, not only that but

yes, that is one of the primary criteria, the goodness of your simulation will depend and also

the convergence of your simulation will depend, so what you are doing? You are defining one

fitness function then you are defining one chromosome that is your data structure - in our

case, it is an integer chromosome. You can have only the 6 degrees of freedom information, I

mean 3 translations, and 3 rotations or you can have other information also with that one.

Now, using that chromosome information, you initially populate the chromosome and during



that population, you randomly generate some chromosomes. Then using the fitness function,

you pick what will lead to an optimal solution.

After that at each step, you reject some previous ones and incorporate some new ones and

during this process, parental selection crossover and the mutation of those three will be a

crucial component of your design. So, combining this you are having one simulation

environment which is non-deterministic and that is called the genetic algorithm.

(Refer to Slide Time: 17:06)

Once that algorithm is designed, then you have to tune that algorithm based on some known

data so that your feature set is good enough for this particular purpose. When you are

selecting the parameters for the setting of the GA algorithm, what you have to decide is the

population size. How many populations will be there? The number of runs, how many times

you will keep on running? Percentage of the population replaced in each iteration.

You can go up to the replacement of all the population or a percentage (>0) of the population.

Now, the mutation or crossover rate that I mentioned is in total 6. Starting from one mutation,

you can mutate 1/2/3/4/5/all 6. You can mutate only the translation part or rotation part or

better you can decide that randomly. I will rotate a random number of positions, which means

6 positions are there, so I will generate two random numbers, one will tell me how many

mutations I will perform so that the first random number will vary from one to 6. Then the

second random number will be telling me at which point(s) I will change. If the first random



number is 1, then the second random number will tell out of 6 positions which one I will

mutate.

If the first random number is 3, then the second, three more random numbers I will generate.

They will be different and will vary from 1 to 6. Similarly, you have to decide about the

mutation or crossover rate, it can be fixed, or it can be dynamic during the simulation.

Then you can decide on selection pressure. Niche sphere dimension in the angstrom angle

allowed between normal’s and when it is normal, then you remember that in Connolly’s

angle’s algorithm, we consider 10 points per angstrom square. There 10 points are surface

normals.

How many angles I can allow to deviate between the normal that I can decide. Several niche

created, creep range of rotation, and creep range of translation, so usually for a good result

you can think of 0.5Å for the translation, and for this rotation, you can consider 1Å sorry not Å

1°, 1° degree of rotation with 360 steps.

If it is 0.5 Å based upon the size of the protein or the number of grids with this that will vary

and in the brute force algorithm, if you remember what we did. I suggested that it will be

something between 6° to 12° and even up to 18° not more than 18° or not less than 6°.

Translation also, we probably decided 1.8Å that way we can reduce. If I go with this one then

it will be a very high number of steps or a large number of steps, then you have to perhaps

think of parallel implementation. Otherwise, it will be time-consuming. That’s it about the

genetic algorithm.

(Refer to Slide Time: 21:37)

If I go for the comparison study, let us start with the last genetic algorithm that we discussed

just now. Long back when the genetic algorithm concept was introduced, and people are



trying to implement it, but didn’t get that much popularity in the case of surface matching or

as an extension problem that surface matching to protein docking decoy generation. It did not

get that much success on that one. On the other hand brute force technique, as the name

suggests is very useful in the sense that, it can generate almost all the possibilities and that

you can control by deciding what will be the grid step and angle of rotation.

Usually, this grid state is 1.8Å and the angle of rotation can be 6° or 9° or 12° or 18°. You can

go up to 3°. But it is not suggested to go beyond 18°. You can consider 10° also. But one

limitation is, you should decide the angle in such a way that if you divide 360° by that

number, then you will get one integer value. That is the only criterion. Now for all these

degrees 3, 6, 9, 12, 18, and 10, it will give an integer value, and since it’s an integer value, so

no problem. But, do not go below 3° or above 18°. Above 18° it will be a very coarse level

orientation calculation, which will rule out a lot of positive cases. On the other hand, if it will

be <3° then the number of orientations will increase heavily. However, if you plan for

implementing in any parallel environment, then perhaps you can consider it.

Regarding the grid step, 1.8Å is good enough. You can reduce it to 0.5Å. Again, if you wish to

increase from 1.8Å then you should be careful about the fact that van der Waals radius sulfur

is 1.8Å to 1.85Å. Now, if you go beyond 1.8Å, then there is a possibility that in one grid cell,

more than one atom will be accommodated. If that is the situation then along with the surface

atom, another non-surface atom will also be accommodated. If the second atom is not on the

surface then it is supposed to give you a penalty indicating that there is a penetration now will

be absent. My suggestion is not to go to some large value for the grid step, but to keep these

1.8Å or some lesser value. Again not very less than 0.5Å, which will not give you much

advantage.

When you are looking for the overlapping, if they are close enough to each other then also,

they may be in a separate cell. Then our multiplication by the assumption that 1 indicates on

the surface and 0 indicates on the outside and penalty is some high negative value or small

positive value will not give you the correct result.

(Refer to Slide Time: 26:33)



Once you decide on that then you can use this FFT-based improvement. This FFT-based

improvement is one of the masterwork in this context, where you can go for the brute force

technique. And for the brute force technique, you have complete control over the

computation time because you are going for the FFT-based improvement. Also, there is a

possibility that you can go for parallel implementation for this, and also for all others. You

can see that there is a possibility of parallelization and if you exploit that one then some time

improvement will also be there. If one algorithm guarantees or suggests that my accuracy will

be very high, but my computation time will also be high then my suggestion is to go for it.

Because it guarantees some good results. Currently, the computation time is not a problem,

even if you consider the storage for the geometric hashing then also it is not much. So, go for

it.

The fast Fourier transform-based docking (FTDock) technique was the first algorithm, which

was designed based on this approach. From this FTdock, some other docking techniques are

also derived and they uses the same kind of concept as the FTdock utilizes. That way this is

one of the pioneering works. After that one this geometric hashing-based technique is also

developed and nurtured by the Wolfson group and then there are algorithms like

PATCHDOCK. PATCHDOCK is the algorithm based on this geometric hashing technique.

Now, this PATCHDOCK is upgraded to FireDock and it is further upgraded to FiberDock

when they incorporated the flexibility in the protein backbone structure. It is a very good

work from the group of Wolfson. Considering that the success rate for the genetic algorithm

is not much.

In summary, the comparison of the techniques that we have discussed as of now, the

references I have provided, wherever I have used some of the literature mostly, and since it is

one of the advanced topics, most of the textbook does not have this kind of algorithm.



(Refer to Slide Time: 29:45)

And here is the reference for the genetic algorithm. It is a comparison of protein surfaces

using a genetic algorithm published long back, in 1997. That’s it. Thank you very much.


