
Algorithms for Protein Modeling and Engineering
Professor. Pralay Mitra

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture No. 13
Geometric Hashing (contd.)

Welcome back. We are almost ready to introduce to you the exact algorithm for geometric

hashing, which will be utilized for recognizing one particular orientation out of all the

different possibilities from the protein molecules.

(Refer to Slide Time: 0:34)

We shall be continuing the same concept and the keywords are also the same. The algorithm

takes two protein molecules as input and outputs a list of complex decoys with several

orientations formed out of the given protein molecules. Do you remember that the last week,

it was a brute force method with time complexity O(n6) to generate docking decoys?

We translate along the X-axis then we translate along the Y-axis, then we translate along the

Z-axis, then we rotate about the X-axis, then we rotate about the Y-axis then we rotate about

the Z-axis, and then one orientation we got. In this case, we will utilize that one to generate

one particular orientation.

So, you can understand that not all the surface atoms will be considered, We will consider

only a subset of the points which we call the critical points. Those critical points or the

important points are sufficient to represent the shape or the physicochemical property of a

protein molecule on its surface and that is enough or sufficient for the protein molecule.

I mentioned that input is two protein molecules. Grossly the step will be to identify the

important points from the input molecules (also called models), next pre-processing the larger

model to populate hash bins. Recognized the smaller model based on the voting at the hash

bins. So, those are the three different steps of this geometric hashing.

Now, we will go into detail about steps 2 and 3 because regarding step 1 we discussed it in

detail including its implementational details. In the pre-processing phase, what we will do for

each model M - is extract the model's point features. So, in this case, our emphasis is not only

on the coordinate but also if other features attached to the atoms specifically the atom part of

an amino acid or residue.

If that atom is having some important or specific feature as an atom or as a part of an amino

acid or part of that protein molecule, you extract that information also. In this case, the

programmer or the developer has the freedom to add his features. You can add that one so

that we will go for the matching and then vote. Next, whether it is matched or not that

decision we can take based upon these feature values.

Assume that n such features are found. Accordingly, the length of the fingerprint or the

information which will be stored as the model information will also vary on how many

features are there. Now, each ordered pair of three non-collinear points that you remember

(P1, P2, P3) was considered arbitrarily. This can be the basis.

(Refer to Slide Time: 4:46)

Compute the coordinate (u, v) of the remaining features in the coordinate frame defined by

the model basis P1, P2, and P3. If you remember that diagram - compute the coordinate u, v

of the remaining feature in the coordinate frame defined by the model basis P1, P2, and P3.

After proper quantization, use the tuple, (uq, vq) as an index into a 2-D hash table data

structure and insert in the corresponding hash table information (M, P1, P2, P3). P1, P2, and

P3 are the basis coordinates based upon which you got this information, the model M will

incorporate the information-like features that I have mentioned.

Based upon the number of features you are considering the size of the M as an array will

change and also the information that you wish to store will change or will vary. Namely, the

model number and the basis tuple used to determine uq and vq that you got from these u, v,

and the hash function you determined using these.

This hash function will be mapped to this hash table. Pictorially it suggests that for each

ordered pair of three non-collinear points (P1, P2, P3) or basis. Compute the coordinate (u, v)

of the remaining features of the coordinate frame defined by the model basis pair P1, P2, P3

and after proper quantization using this hash function you go to that 2-D hash table.

(Refer to Slide Time: 7:11)

Let us assume that there is an object. This is my P1, this is my P2, this is my P3 and say this

is my P4, this is my P5, this is my P6. Several other points are also there. I am not detailing

that one. These are only the schematic diagram. Now, you declare one, or even before that

one you select one basis coordinate or non-collinear triplet that I am assuming (P1, P2, P3). If

it is (P1, P2, P3), through this I am passing one coordinate system.

There is a small change. Let me do that. The numbering will be this is P2 and this is P7. So, I

got P1, P2, and P3. P1, P2, and P3 are my basis. For this basis, I can consider this point say

P5. So, projection of P5 on this I will get. For this P5 model information, I will get from this

projection, I will also get (u, v).

Using h(Q(u),Q(v)), I will have one index position say (uq, vq). I am assuming the existence of

one hash table. This is my hash table. This uq and vq will be in some position say here, say

this is my uq, vq which means this one will go and will be mapped here. Instead of (P1, P2,

P3), if I consider another basis point say (P1, P4, P3), I will have this feature say M’ since the

basis point has changed, so, the feature may also change at least the geometrical features

which will be there. Under this situation, similar to (u, v), I will get (u1, v1). I can get this hash

function. If I assume this is my (u1q, v1q), then this green will go and map here that way.

After selecting the number of important points, then you choose a list of triplets that are

non-collinear, and for that, all the points I considered only P5. But when I am considering P1,

P2, and P3 then except you want P1, P2, and P3 other points I can calculate and map here.

Now, this mapping will be done initially for one protein molecule and that is my

pre-processing stage in this pre-processing stage it says that it is offline. So, during the say

actual orientation calculation, I did not have to do that one. This is my pre-processing stage.

What is next? By this pre-processing stage, I populated these hash tables and in that hash

table at each position or in each hash bin there is model information and the basis

information. Basis information tells how I am getting that orientation and model information

tells about the features which you will be matching during the recognition phase. So, it will

be done during the pre-processing stage.

(Refer to Slide Time: 13:42)

Now, in the recognition phase when presented with an input do the following - extract the

various points of interest similar to the first point of the pre-processing stage again, I have to

extract the important points. Then assume that S is the set of the interest points found and let

|S| be of the cardinality of S.

Choose an arbitrarily ordered pair P1’, P2’, P3’ or basis of interest points from you. Compute

the coordinate u’, v’ similar to the previous one of the remaining interest points in the

coordinate frame defined by the basis P1’, P2’, P3’ same as the previous one.

(Refer to Slide Time: 14:25)

Next, appropriately quantize each such coordinate, and appropriately hash to the bin (same as

the previous one) for every entry model (P1, P2, P3) found there. Cast a vote for the model

and the basis. What is the difference? Up to this point, it was the same that the recognition

phase and pre-processing phase is the same. But what is new in the recognition phase is that

once you will get one hash bin location where it is supposed to be stored and is stored for the

pre-processing stage for the recognition stage you cast a vote for the model and the basis

means, it is matching with the initial protein molecule.

You are doing a pre-processing with one protein molecule and say recognition with another

protein molecule. Now, for these protein molecules, one particular orientation is going to one

hash bin, and one particular orientation along with the model and basis point is going to that

same location which means they are matching. And when they are matching, I am casting one

vote.

Plot a histogram of all table entries that received one or more votes. Proceed to determine

those entries that received more than a certain number - threshold. You can apply some

threshold based on your idea or votes each such entry corresponds to a potential match that is

the hypothesis of the generation.

Each such entry corresponds to a potential match, potential match means that there is a

probability that there is orientation. So, what is zero in the vote? Zero vote means this is one

way to solve, this is another way to solve, look there is no matching. That is why there is no

vote, but whenever there is some surface overlap matching in the feature and the orientation

matches then there is a vote.

(Refer to Slide Time: 17:39)

For each potential match discovered in step 5, the previous step recovers the transformation T

that results in the best least-square match between all corresponding feature pairs. Next,

transform the features of the model according to the recovered transformation T and verify

them against the input feature verification step. In this case, this image - my model remains

because initially this geometry hashing was designed for recognizing the object in computer

vision. As of now, we are discussing two-dimensional, but I believe that you can easily

extend that to a three-dimensional protein model. Now, if the verification fails, go back to

step two and repeat the procedure using a different image or basis pair.

To summarize, the algorithm says that first you have to identify the critical points for both the

protein molecules, then you decide for which you are going to pre-process and for which you

are going to recognize. Now for which you are going to pre-process, then corresponding to

each set of non-collinear triplets you compute the (u, v), then using that u, v you generate the

hash index/bin. You store the non-collinear triplets which we are calling as a basis or the

ordered pair or the basis coordinate and the model feature information in that hash bin

location, that is a pre-processing stage.

In the recognition stage, everything you have to do whatever you have done for the

pre-processing stage. But instead of storing in the hash bin hash table, you go to the hash

table using the same way you generated the hash table index, you go to that location and

whenever you find that somebody is present there you compute your features vector and their

feature vector you perform some computation and if you see that there is a match, then you

give one vote one increment and of course, you need to store this information also so that in

future if required you can generate that particular orientation.

That way once you will fill up one orientation corresponding to one triplet (non-collinear

basis point) during the recognition phase, your voting is over. Then you pick the best vote or

the vote or the cases whose votes are beyond the threshold value (better than zero). You pick

those cases and go for the verification.

In the verification stage, you go for the reverse transformation or you recover the

transformation and you generate and then you check whether it verifies or not. If yes, then

find that is one of the possible cases. If not then you discard and move on to another one.

(Refer to Slide Time: 21:19)

If we look at the complexity, then it is comparatively very fast. In the pre-processing stage,

O(Mm4) whereas, for the recognition stage the worst case is O(i4Mm4), where M is the

number of models, m is the model point.

The model point means the critical points that you have identified. Definitely what we have

discussed based upon that one critical point is not going to be the same as the number of

surface points. It is much less than that one. That way it is advantageous. Although at the

complexity level, you are looking at Mm4, it is not much since the number of model points is

less very, very less compared to the total number of the surface points.

That total amount of computation time that will be required for the geometric hashing will be

very less compared to the brute force technique or if I go for the fast Fourier transform-based

technique, then also I use the same point.

(Refer to Slide Time: 22:42)

There are some disadvantages too. For the algorithm to be successful, it suffices to select an

image basis triplet which belongs to some model otherwise it will be a problem. The goal of

the voting scheme is to reduce the number of hypotheses that must be verified during the

filtering stage. In the case where model points are missing from my image, it is still possible

as long as there is a sufficient number of points in the correct hash table bins you can

generate, that is good news. Remember this!

(Refer to Slide Time: 23:30)

Looking for 4-point correspondence between the three models and that 2-D image 3-D hash

table. Four non-coplanar points define a 3-D affine basis - the coordinate of any 3-D point

can be computed in this coordinate frame. During recognition, we vote for all the bins lying

on a given line in the 3-D hash table. And you have to avoid unsuitable basis triplets. There

may be some basis triplet for which a skinny triangle lead to instability. For example, if the

situation is say some protein molecule, if you consider this one and say you are considering

this as one say this is point this is one. You see that there are two frequent points for which

the direction changes. But, if the situation is something like say here is one, here is one and

say here is one. So, these three points, they are also called non-collinear. If this is the case, it

forms a skinny triangle, then that may create some problems, avoid skinny triangle using an

area criterion.

(Refer to Slide Time: 24:05)

Area criterion is one, and angle criteria are another. Three non-collinear points will form one

triangle, then the internal angle will sum up to 180°. Now, you have to be careful that the

distribution of the internal angles among the three angles actually will be more or less the

same. It should not be that one angle is less than 2° or 5° and the rest is going to be say 170

or so - that may lead to some skinny cases.

You have learned good geometric hash functions. That is always a criterion specifically when

you are interested to work with the hash function. If you are working with the hash function

then selecting the correct hash function or good hash function must be your priority,

otherwise a lot of problems may arise among a lot of problems the first problem is that

collision. If a collision occurs, you have to resolve it by rehashing or double hashing, or

chaining. So, those are extra complications on top of what we are going to do with this

geometric hashing. This extra computation because of a poor hash function is not good and

will create some additional computational overhead.

(Refer to Slide Time: 27:04)

Learn good geometric hash functions. Making the size of the bins proportional to the density

of the data is a good thing, okay learning is based on the Kohonen Neural Network. That is

another suggestion. Think of the grid as an elastic net that deforms based on the density of the

data. Also, you think about the data distribution and the grid size. If you do not think about

those cases, then some situations may appear where because of the distortion the distribution

is not good.

And if the distribution is not good, then what will happen is that maybe here it will be sparse

it will be very much congested in this case. In this case, it is very congested; here this is very,

very sparse. So, those kinds of problems will appear. Better to avoid those kinds of problems.

(Refer to Slide Time: 28:42)

Also, the advantage of geometric hashing is that it is very fast as demonstrated by its

computational complexity. If you look at the computational time, then consider the fact that

the number of critical points is very very less compared to the number of surface points. The

surface point by surface point as of now, we understand that the grid cell or maybe the atoms,

but in the very next lecture, when I will discuss the molecular surface, then we will see that

the surface atoms. The surface points are more compared to that one. On the other hand, what

we are considering is very very less. The only disadvantage of this geometric hashing is the

storage requirement. It is very high and increases with the increase in the object points.

I can give you one real-life example and I estimate that, for one protein molecule where there

are about 330 amino acids and it’s a homodimer which means two protein chains are of equal

size, so 330 in one subunit or one protein molecule and 330 another protein molecule, one

geometric hashing may take about say 5 to 6 GB of data.

If you do not have any expertise on how to use that GB of data, partly keeping in the say

secondary storage and partly in the RAM, and to speed up the computation, if you wish to put

in or pull everything from the secondary storage to the RAM during your recognition phase,

then you need a very good Workstation or very large support for the memory.

Currently, with the advent of computer technologies, memory is not that much costly. And

some of the desktops even have 4 GB or 6 GB, or 16 GB data. It is then not a problem. But

otherwise, it’s a problem. Proper identification of object points is crucial for success. If I miss

some of the anchor points, then definitely, I am going to miss the correct orientation, because

orientation is directly proportional to the computation which is based on the identification of

the critical points. That’s it. Again I mentioned that mostly in this geometric hashing, I took

the help of these three papers, mostly the work of Wolfson. Thank you very much.

