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So,  welcome back to  this  class on Hardware Security. So,  we shall  be counting our

discussions on power attacks and in particular today will shall be discussing about the

topic which is called as mutual information analysis.

(Refer Slide Time: 00:31)

So, we shall be trying to see how mutual information analysis can be developed. So, we

will  basically  start  with  the  preliminaries  behind  mutual  information  or  MI  as  it  is

abbreviated.  We shall  try  to  define  mutual  information  and also  conditional  entropy,

which is fundamental to the understanding of this technique. We shall formalize this with

respect to side channel analysis and side channel decay and we shall define what is the

MI based distinguisher. And then I will be discussing about couple of toy examples and

real life examples to illustrate how it works in practice.
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So, to start with mutual information analysis or MIA as it is abbreviated is a general or

generic side channel analysis distinguisher. So, like we have seen CPA and difference of

mean which we essentially like side channel distinguishers which are build around the

Pearson’s  correlation  coefficient.  So,  here  we  try  to  apply  the  idea  or  theory  of

information theory and try to developed a statistical tool for doing power attacks. 

So, the objective is to perform the side channel attacks with minimum assumptions and

knowledge of the target device. So, for example, like when we were applying the CPA or

difference of mean then as I said that one of the reasons why the attack works well is

because we basically make tacit assumption that the leakage is underline the underlined

leakage is linear ok.

So,  likewise  right  I  mean  and  it  is  more  like  the  correlation  coefficient  is  more

appropriate when the leakage is linear ok. But in this case what the objective is basically

since it is more fundamental in its way the MI tool is developed. We basically can work

with minimum assumptions and knowledge about the target device. So, MIA is also like

the DP and the DoM techniques right or the CPA technique is basically a known profile

attack; that means, it does not have any profiling phase as we have seen in the context of

template attacks ok.



And its main advantage is that it can detect any kind of data dependency in the physical

measurements of k. So, that is not necessarily linear as we have seen in the context of

DoM or CPA and it relies on very strong fundamentals on information theory ok.
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So, it is important to make a quick recapitulation about how or what are the tools that we

have in account in information theory. So, for example, let X be a random variable which

is defined on a discrete space denoted as s i and x is an element from this space. Then we

can define the Shannon entropy of a random variable on a discrete space essentially in

this way.

So, it basically captures the amount of uncertainty which is essentially basially it is a

measure of uncertainty during an experiment uncertainty in this random variable ok. So,

for  as  I  know that  if  I  have  got  n  bit  of  data  for  example,  then there  are  n bits  of

uncertainty or n bits of unknown the there for the entropy right. In the if I said you that

the random variable can take any possible n bit value; that means, there are 2 to the

power of n possible values, then the entropy of that variable is n So, n bits in general.

So,  here  we  basically  try  to  give  a  general  formulation  of  how the  entropy  can  be

calculated. So, essentially its probability of X equal to x; that means, the probability that

the random variable  X takes the value of small  x multiplied with the logarithm with

respect to base 2 of the probability of X equal to x. And note that since it is a logarithm

right and therefore, the values being lesser than 1. The probability being less than 1; the



logarithm is negative. So, we kind of cancel that by a negative sign and that is essentially

the formula of how to calculate right HX.

So, likewise we can define the joint entropy, I mean essentially when we have got a pair

of random variables like X and Y. And therefore, this expresses the uncertainty one has

about the combination of this variables ok. So, for example, it may happen that there are

two jointly distributed random variables and some of them never occurs actually ok. So,

therefore, that reduces the entropy of their joint or rather it reduces the joint entropy. So,

what  we basically  say or the way to measure H X, Y is  a  natural  extension  of this

formula is that you replace this probabilities by their joint probabilities.

So, you have got the same way we can formulate now you have got probability of X

equal  to small  x comma Y equal  to small  y that  is  the joint  probability  distribution.

Likewise in the long also we have got probability of X equal to small x, Y equal to small

y, but now the sigma is taken over both X and Y. So, there are is basically a double sigma

written as single sigma. So, this is essentially how we can calculate the joint entropy of a

pair of random variables n.
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So,  now we would  like  to  define  a  very important  definition  of  what  is  called  as  a

conditional entropy ok. So, how can we measure conditional entropy? So, the easiest

way probably you know like to formulate conditional entropy is probably to think of in

this way like let us take assume that this is Y that is the condition Y essentially takes a



specific value say y ok. So, we get the Y equal to small y and then we basically multiply

the  entropy of  X given Y equal  to  small  y  with the  probability  that  Y takes  y. So,

basically  like this from you can say that we are applied the kind of the law of total

probability and we are measuring this entropy ok.

And now what we do is so, it is not specifically total probability as such, but we are

basically trying to find out the total entropy by you know like varying Y over all possible

values of Y. So, now, the we would like to calculate H of X given Y equal to small y ok.

So, this H of X given small y can be easily calculated therefore, now note that Y equal to

small y right. 

So, therefore, this is basically I am kind of fixing the value of the condition. The moment

I  fix  the condition right  essentially  I  can write  the corresponding description  of this

entropy in exactly the same way as we wrote the entropy in the previous case. So, now,

we will write probability of X equal to small x because this X can take some value say

small x condition on Y equal to small y multiplied with the log of probability of X equal

to small x given Y equal to small y.

Now, note that these two things can be multiplied and you know like from the definition

of conditional probability. We can write as a product of X equal probability of X equal to

small x given Y equal to small y multiplied with the probability of Y equal to small y is

nothing, but the joint probability distribution of probability of X equal to small x and Y

equal to small y ok. And therefore, right this is the corresponding if you note again that

the sigma is a double sigma which is a varying over both X and Y. And a very easy way

or I would say like a good way of remembering how the entropies are in relation to them

is in the form of this Venn diagram ok.

So, if you see this Venn diagram right this is your H X ok, this is your H Y and note that

this region is H X given Y. That means, you know like that if I tell you that this is your H

X space and I tell you that the amount of. So, suppose I want to calculate H of X given Y;

that means, since you know that you know like that Y. Suppose you have the information

of Y so, the amount of remaining information which is there is given by this portion that

is why this stands for H of X given Y likewise this portion stands for H of Y given X.

And you can easily note that we can write you know like if I want that H of X comma Y,

then that is given by this total region.



So, you can know that if I add H X and add H Y then it is more than H of X comma Y.

So, therefore, these kind of relationships becomes quite evident if you think of this Venn

diagram. In particular  we shall  we are interested about this  region and this  region is

called as the mutual information of X and Y. 

So, therefore, you can easily see that H of X right essentially which is this total entropy

is nothing, but so, we can write that H of X is equal to H of X given Y plus the mutual

information of X and Y ok. In other words the mutual information of X comma Y is

equal to nothing, but H of X minus H of X given Y similarly you can write with respect

to y as well. So, therefore, this gives an kind of an easy way to kind of remember or

understand how the relationships between these you know like this parameters are.
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So, therefore, mutual information is a general measure of the dependence between two

random variables. It expresses the quantity of information one can obtain about X after

observing say Y. So, if I measuring say I X colon Y, it is a amount of information right

which you are essentially measuring about say the random variable X by observing Y.

Since I X colon Y is equal to Y, Y colon X, you can actually define in a commutative

way also. 

So, you can say this is the amount of information about Y which you are observing by

say X. So, therefore, right we can write I X colon y is equal to H of X minus H of X



given y that is what we have seen and therefore, right using the result that H of X colon

X comma Y is equal to H of Y plus H of X given Y.

So, you can note that H of X you know like H of X comma Y you can write as if like it is

I am adding H of Y with H of X given Y right. So, therefore, you can also write that I X

colon Y is equal to H of X plus H of Y minus H of X comma Y. So, now, I would like to

measure these mutual information in terms of the various probabilities actually ok.

So, now, let us see how we can do that. So, I X colon Y you can also define it in this way.

So, you can write this as nothing, but the this again is a sigma which is taken over both X

and Y and you are basically multiplying you know essentially you have got P of X equal

to x that is x small x comma Y equal to small y. 

The logarithm of the probability of X equal to small x comma Y equal to Y divided by

the probability of X equal to small x and probability of Y equal to small y. And this

essentially is nothing, but the sigma of probability of X equal to x and you know you can

split this probability of X equal to small x comma Y equal to small y as probability of Y

equal to small y.

Given X equal to x and then multiply the probability of X equal to small x and this part

you can also write in this way by you know like elaborating this probability of X equal to

small x colon comma Y equal to small y in terms of this. That means, you know like you

can write this in this way because if you if you want to a kind of elaborate this part, then

you can write this part as probability of Y equal to small y given X equal to small x and

this is nothing, but and this you are basically multiplying with probability of X equal to

small x. So, this essentially is equivalent and therefore, this part will cancel with this part

and therefore, you will have probability of Y equal to small y given X equal to small x

divided by probability of Y equal to small y.

So, this is the way in which you can directly calculate the conditional probabilities and

from that you can estimate the value of this mutual information ok. You can calculate the

value of mutual information.
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So, now, with this background let us see and try to see how we can apply MIA for side

channel key recovery. So, here is one very fundamental paper from published in journal

of cryptology in 2011. So, this diagram is taken from this paper. So, you can observe that

what we try to do here is there are certain random variables which are being defined

here.

Ah One way to kind of conceptualize this is by considering that there is a device which is

performing several cryptographic computations and you denote that by say E k p ok. So,

E k p stands for your encryption implemented and it is processing on p which is the

plaintext and there is a fixed k key which is k, which you want to determine by your

attack. Now the device under attack manipulates a target computation like we have seen

in context to the other d p attacks, there is a target computation. So, it could be the output

of an s box it could be the input of an s box and so on and so forth. So, you there is a the

device under attack manipulates a target computation and updates a sensitive variable.

This sensitive variable is denoted as a V s comma P. So, in this case you know like this is

V j comma P, but you can think of that as some V s comma P S value ok. The V s comma

P for a fixed input P ok. So, note that the actual leakage because so, the actual leakage

right. So, this is the, you know like the actual computation. So, this is V s comma P; so,

so V s comma P is the. So, there are two parts in the device. So, you see like when we are

doing the thinking of the mutual information attack, then the attack essentially has got



two parts like as we have seen in other part attacks also. There is one part where you are

basically having the device are you know like the device means the actual device which

is processing the actual secret key ok.

The secret key is essentially denoted as say small key. This is the correct key this is the

actual and when you are computing this, then there is an intermediate target variable

denoted as V s comma P. Now this V s comma P although this is the target variable. So,

this V s comma P denotes like essentially it is a specific target which we are choosing,

but the leakage essentially is denoted as Y k comma P this is an observable. So, this we

called as the observable ok. So, this is the observable leakage often we denote it as O.

So, note that although you are probably processing on a part of the key like s probably or

part of the state.

But when I am trying to I am writing the leakage then the leakage essentially is you

know like is essentially k denoted by k where k is actually a secret key which includes

the sub key s ok. So, therefore,  it  is including the sub key s. So, therefore,  the total

leakage will  actually  not  happen only because of the part  of  the key, it  will  happen

because of the part of the key along with the remaining parts of the key also. So, that

total key is denoted as small k out of which I am interested in a part of the key because I

am doing a divide and counter based attack.

On the other hand when you are talking about the adversary that means when you are

doing the attack basically you do not know what is the key. So, you try to guess the key

right. So, therefore, what you do in the attack you basically you try to guess the key and

you try to do a prediction ok. So, you basically try to make a prediction and you derive

something which is called as the leakage ok. 

So, you basically find out a leakage vector and this is essentially denoted as L. Now this

leakage again depends upon the guess which you are doing. So, there is a guess of the

key that you are doing and this guess essentially is kind of mapped by some function into

a leakage. So, this guess let me denote it as say k star for example. So, therefore, the

leakage will parameterize by k star. So, therefore, I call that as L k star.

And then my objective will be to define a distinguisher which will tell me whether the

guess is correct or not ok. So, the guess right k star could be say j and I want to find out

whether these j matches with this is d or not. So, s is the part of the key and the attack is



successful if j is equal to s; that means, if you are basically guessing correctly a part of

the key again remember that the leakage right does not depend upon the part of the key,

but the leakage depends upon the total. So, therefore, right let us see how we can do this

and we will try to kind of you know like understand the working principle of the attack

by essentially defining the following steps.

(Refer Slide Time: 16:03)

So,  therefore,  here  is  the  remaining  part  of  the  attack.  So,  in  the  guess  phase  so,

therefore, the previous one was the you know like when you are profiling and you are

getting the observable O and now you are trying to estimate the leakage s I mean the

leakage L. So, this is a guess phase and in the guess phase the attacker guesses the part of

the key say j and the attacker computes the hypothetical sensitive state V j, P. 

So, this is hypothetical sensitive state which your targeting so ok. So, therefore, I denote

that as V j comma P and the attacker applies the leakage model. So, this is the leakage

model that I will soon elaborate more. So, basically you make a leakage model and you

can so, the leakage model could be something like the hamming weight leakage model.

And then you know like the attacker applies the leakage model to estimate X j comma P

ok. So, this is the X j comma P. So, therefore, Y j comma Y k comma P is the observable

something which you are observing and X j comma P is what you are estimating by

based on your guess and therefore, now for the successful attack you will basically apply



you know like a distinguisher d to compare these two different you know the different

models X j comma P and the actual leackage.

Note that this  why I said a different mode X j  comma P because X j  comma P will

depend upon the guess which you make. So, you will basically make j 1, j 2, j 3 and so

on and therefore, you will guess a part of the key and you will try to see that whether X j

comma P matches with your actual leakage something similar what we have done in the

case  of  correlation  attacks  where  we  are  doing  a  correlation.  But  now  we  will  be

calculating this information or mutual information and we will basically try to find out

what is the best comparison results and the idea is that the best comparison essentially

will give you the correct subkey.

(Refer Slide Time: 17:41)

So, therefore, right here is an illustration of a univariate MIA. So, univariate mas stands

for the fact that you are basically guessing at a at a distinct time instant ok. So, consider

that you know like Y equal to so these are just an example. So, therefore, suppose Y

equal to H w S of P XOR s this denoted as so, this is nothing, but s of P XORed s. So,

therefore, P stands for the plaintext s for the part of the key and S is the S box which you

are targeting and then I measure the hamming weight of the corresponding computation

and then I add a Gaussian noise to that ok. So, therefore, right I mean note that the target

right when you are basically guessing essentially.



You essentially have basically you are taking a key hypothesis. The key hypothesis is

denoted as j and you again measure H w of S of P XOR j and you measure the hamming

weight of that and you denote that as X for the corresponding hypothesis. So, now, what

we plot is basically the so, in this case this diagram shows the process by the red line, it

shows the probability of Y equal to small y ok. So, the probability of Y equal to small y

stands for the probability distribution of this Y and we also plot by this other graphs. We

plot the joint probabilities or probability of Y equal to small y and X equal to small x.

So,  note  that  we  basically  plot  the  joint  probability  densities  for  probability  that  is

probability of Y equal to small y comma X equal to small x, but different models of X

equal to small x. So, Y there are again different models. So, I said this will depend upon

the corresponding guess that you do ok. So, the guess essentially in this case right. It is a

suppose you are making a guess of a portion. So, the I guess right essentially can be say

0, 1, 2, 3 and 4 ok. So, note that you are making this guess based upon the corresponding

you know the base on the corresponding hamming weights.

The idea is that you can reflect on this that if your X takes different values like X equal

to 0, 1, 2, 3, 4 , you will observe here that this you know like what we what we what we

what we note here by the corresponding Y values are those cases right. So, where the

hamming  weight  we  basically  plot  the  you  know  like  we  basically  observe  the

corresponding values of Y for the corresponding value of X.

Note that in this case right this is for the correct key guess ok. So, for the correct key

guess you note that if X equal to 0 then; that means, right I am corresponding to those

cases  where  the  hamming weight  id  0  ok.  And we know that  Y equal  to  0  or  Y 0

essentially is the corresponding case where the hamming weight is 0 and there is only

one such candidate.

Likewise when you go to X equal to 1, there are 4 cases like you have got 1, 2, 3 and 8

all of them have got hamming weight of 1. If you consider 2, there are more cases ok.

Again if you consider 3, there are 4 cases. Again if you consider 4 hamming weight,

there is only one case 1 1 1 1 and that is Y 15. So, now, when you are making so,

therefore, right I mean you can observe that in this particular case the marginal. So, the if

you observe right; if you observed that the marginal probability the marginal probability



is or the marginal leakage probability is denoted as probability of Y equal to small y and

that is plotted by these redline ok.

So, you will observe that this marginal probability matches very nicely with your joint

probability distributions ok. So, there is a nice overlap between them where is when you

are guessing it wrongly then its slightly differs. For example, the reason why it differs is

because when you are guessing the key wrongly then; that means, there is a kind of

mismatch and the miss match you can observe again by observing this table.  So, for

example, again X equal to 0, 1, 2, 3, 4; these are all the hamming weights of your, you

know like the guessed state and these are the corresponding Y values. For example, note

that suppose you know like so, suppose you know so note that for example, for 2 right.

If you consider 2 now like the where X equal to 2 in the previous case all these Y values

had hamming weight of 2. But now this number will remain the same that is the number

of Y values will fall into the pocket will again remain the same because you are just

doing an XOR. So, therefore, you know like its basically a permutation of those values.

So, therefore, you will still have the same number of corresponding Y values which we

fall into the pocket of X, but the interesting thing is that out of here every Y value does

not have a hamming weight of 2 ok.

For example you can see that like y 3 will have hamming weight of you know like of 2

you know like y 9 has a hamming weight of 2 and so, so y. So, y 3 has hamming weight

of 2 and y 9 has hamming weight of 2 and there are no there are no more. So, therefore,

you see that the you like that the joint probability we observe a probability of Y equal to

2 and X equal to 2 we will not now nicely match with probability of Y equal to 2 and this

will fall much lesser. And therefore, right I mean what will happen is therefore, you we

will find that this does not match very nicely with their. So, therefore, in this way you

can actually develop a distinguisher this is essentially the basis why you can develop a

distinguisher.

Because you know like that depending upon whether your guess is correct or whether

your guess is wrong, you see that the marginal  probability  essentially  has got a nice

correlation with the joint probability. And if your guess is correct whereas, if your guess

is wrong then that you know like that correlation is lost or that I would say that match is

gone basically.
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So, let us not use the term correlation here, but let us say that the match is gone. So,

therefore, right this is the basic basis behind the attack behind the how we can develop

our attack strategy. And therefore, what we do here is that we so, this is how we are

basically you know like we can conceptualize the attack.

So, we have got a target chip or target design IC for example, and in that right. Basically

it is processing some intermediate value say W and there are 2 channels here. In one

channel  the device  correspondingly, you know you have  processed the secret  key is

embedded for example, here as k and the leakage essentially is a side channel leakage ok.

And there are 2 leakage directions you can see one. So, there are 2 channels basically in

one channel we basically observe this E k X and the other one we basically do use a

measurement. So, the measurement gives me an O value. So, therefore, right this E k. So,

therefore, so the idea is that this leakage ok.

So, basically it processes all the intermediate value say W and then gives the estimate

which  is  essentially  denotes  as  LW. So,  this  LW essentially  stands  for  your  leakage

whereas, when you are applying or you are taking your scopes and your probes right, you

get an actual power estimate that is your observable power that is denoted by 0. So; that

means, the device which is denoted by IC carries out the operation E k where k is the

secret key which is modelled as a random variables and the intermediate word which is

being processed is suppose denoted by a random variable W on 0, 1 n.



Now, the side channel  leakage which is  say denoted  as L or math cal  L which will

depend upon time and also on the word which is being processed by the IC ok. So, hence

L contains information about the intermediate value W and we model the output values

or output values of L as a discrete random variable L on the space of 0 to L from like 0 1

2 3 4 L and so on where L is much lesser than or equal to 2 is lesser than or equal to 2 to

the power of n. So, it can be you know like depending upon the corresponding state

value like suppose there is an intermediate value say W which you are estimating.

Depending upon the value of this  W you try to  estimate  L you try to estimate  your

leakage as L, L and you also have observed measurement  which you are essentially

measuring.
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So, therefore, right in the you can formalize this these two channels in this way. So, the

random variable L is observed by measuring a physical observable O. So, therefore, the

idea is that there is a random variable L which essentially the actual leakage, but you was

an attacker are not able to observe that actual leakage, but you are getting a you know

modified  version of that.  So,  you are basically  getting  something like O. So, this  is

denoted  by  this  channel  where  rather  than  observing  L,  you are  observing  O as  an

attacker.

But as an attacker also you can you if you can guess W or you can make a guess on W

you can estimate the leakage L at some specific chosen time say tau. So, therefore, now



the attacker  what  it  does is  that  basically  does several  measurements  by varying the

plaintext and it observe different values of the observable. 

So, the observable are denoted as O X by t which means you are it is nothing, but the

measurement traces which you are observing ok. So, you are basically getting different

power traces and you are giving inputs which are denoted as X i s and you are observing

the  corresponding power  values  at  different  instances  of  time.  So,  you are  basically

observing the power consumption across time instances.
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So, you basically get lot of values of O and now what you what you basically try to do is

you try to develop a goal for the mutual information adversary. And the idea is that the

mutual  information  adversary which basically  what  it  does  is  it  takes  different  input

values say x 1, x 2 and so on till x q ok. And then the corresponding measurements are

observed side channels are you know like denoted in this multi set which is O x 1, x 2

and so on till O x q. 

So, this is your observed power traces and then the side dhannel adversary experiment is

defined as follows you guess a part of the key. So, therefore, this is denoted as K for

example, and now you basically also using this guess you basically calculate the values

of the intermediate target register which is a W which I denoted as remember W right

here in this diagram



So, this W is estimated. So, the W is estimated based upon the input X and also the guess

which you do on the key. So, therefore, now what I do is, I mean guess means guess on

the part of the key. So, now, I guess this part of the key and depending on all my imports

right I basically you know like observe the corresponding leakages and I basically try to

find out their  you know like try to find out apply a distinguisher on this guessed or

estimated leakages with my observed output. And the idea is that it returns k star and if

my k star matches with k, then I say that my experiment was successful and that gives

me a measure of the advantage of my experiment.
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So,  now  what  we  try  to  do  is  we  basically  try  to  construct  an  information  based

distinguisher. So, to each possible key say k star k dash which I you know like choose

from 0, 1 to n I basically create this partitions of my input space ok. So, basically what it

means is I now choose my input space and I divide my input space into certain partitions

ok.. So, this partitions are remember that I have got input X I guess a key. So, this k or

key part say suppose this is k dash and apply say the box or some kind of function which

is denoted as f.

So, I get a value of f k applied on x or f k dash applied on x. Now I applied power model.

So, this power model this could be you now like the hamming weight power model for

example, gives me an estimate of its leakage this leakage is suppose some value i. So,

now, what I do is I basically in one partition suppose there is a partition for i, I basically



put in all those x values which is essentially falls into that partition. So, these are if there

are  two x  values  which  is  these  to  the  same I  value  then  they  belong  to  the  same

partition. So, this way I create this partition and that is essentially donates as H i k dash

likewise

You know like I have got leakage partitions for 0 for leakage one two 3 and so on. So, all

the possible leakage values all these values together gives me this partitioning denoted as

H k dash. Now H k dash also induces a subdivision which is denoted as G k dash which

is essentially nothing, but. So, if you consider you know like one of these leakages say

for example, you know like let me write as you know like H i k dash. So, what is H i k

dash? H i k dash means stand for all those you know like input values which leads to the

leakage i.

So, now what I do is in this? So, therefore, imagine that there is a bucket corresponding

for L i or leakage equal to i; i basically observe all the observables which essentially goes

into  here  ok.  So,  remember  that  I  can  have  some  observation  O  1  I  can  have  so,

observation O 2 likewise I can have several observations which can go over here and

then they are not  same.  The observed power values  are  not  same,  but  the  estimated

leakage from where you are basically you know like getting the I mean basically write I

mean the leakage right is getting modified to 0. So, although the leakage is remaining

same, but this can vary because of noise and several other parameters.

So, all those things right which essentially goes into this bucket essentially are denoted O

the various O values and this gives me this partitioning which is denoted as G k dash ok.

So, G k dash therefore, has got G 0 k dash and likewise till G L k dash indicating right

that in one of these the if I write G i k dash then G i k dash would mean that you know

like for all those input x values which are essentially has gone to this leakage or which

has lead to this leakage i ok, what are the corresponding values of the observables.

So, all those observables which are essentially you know are corresponding to those x

values which are lead to i are essentially observed in this partition they are kept in this

partition. Therefore, right I am kind of finding out how many observables are there or

what are the observables we are there ok.
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So, now, so, now with this definition right we can essentially go to calculate or define

what is essentially the we can go to and define the actual attack. So, therefore, now what

the attacker does is that therefore, the attacker guesses the key value k and computes f k

X which is an intermediate result like S box of XOR k. And now I basically you know

like this W is say some bits of a f k X say it could be the it could be the hamming weight

also , but suppose it is some bits, bits of f k X say it is the 3 MSB bits. So, therefore, you

I take the 3 MSB bits like what I am trying to say is that ah

If right when you are doing this right x XORed with k and you are applying the S box

say denoted as f and you are targeting one of these outputs. Suppose right my W is given

by the first 3 bits over here and these bits or the value of this 3 bits essentially will give

me the corresponding leakage class. So, how many values can this 3 bits it can take? It

can take 8 values right. So, therefore, all of these 8 values are denoted by this leakage

classes from L 0 s you can imagine that there are buckets like L 0 L 1. So, on till L 7,

there are 8 buckets over there.

So, now what I do is basically I know that suppose I you know like fix L 0, I want to find

out all the O values which are gone over here. So, therefore, it could be that O 1 is you

know like there O 1 is one value O 2 is the other observables O 3 is the observables and

so on. So, using that right I basically estimate this P O given L i. So, P O over given L i is

nothing, but the number of values which are there in L i; that means, this stands for the



cardinality of this L i set. And the numerator is nothing, but all those x j values which

was led to L i, I have found out the corresponding O values and I have.

I want I am basically observing that whether this O x j is equal to O or not and that gives

me an measurement of this probability distribution of probability O o given L i. Likewise

I can calculate probability of O as nothing, but total q and you know like the total set of

how many O x j s is equal to O ok. So, this is the cardinality of this set. So, once you

have developed these probability notions ok. So, what we can do is we can now measure

the corresponding entropy.
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So, the corresponding entropy is there for now given by this formalism. So, therefore,

suppose I want to calculate. So, we are all said to calculate H O of L i O given L i and

also H of O. And therefore, we know that H of O given L is nothing, but this probability

estimation. So, there it is probability of O equal to O j comma L equal to L i multiplied

with log of probability of O equal to O j given L equal to L i. 

So, therefore, right this leakage is estimated based on a guessed key and we call it as L k

and then what we do is that we in our mutual information estimation.  We can either

maximise this i L k colon o. So, we basically written that k for which this is maximized

or as we can observe the H O is constant, we can just minimise this parameter and that is

this denoted as this. So, we can basically minimise the conditional entropy H O given L

k.
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So, now let us try to apply this on a toy example. So, this is a toy example of an S box

which is nothing, but you know like this is a mapping which is it is just a symbolic box.

So, what we do is that we basically model the power based on the hamming weights. So,

you can see here the hamming weight 3 means it is written the observable is 3. This is

the  hamming  weight  is  2  so,  the  observable  is  two  the  hamming  weight  is  2  the

observable is two and so on.
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And now what  we  do is  we basically  use  it  to  do  the  attack.  There  is  one  further

important point which should be mentioned here is that the leakage function which I

mentioned should not be bijective because if the leakage function is bijective. Suppose in

this particular example, I choose say all the 3 bits as my leakage value; that means, if I

choose all the 3 bits of my output right of my output S box, then there are eight possible

classes and you can if you just think a while right you will understand that if it is. So,

then it is evident that because of this leakage function for all i, there will exist one j for

which these condition probability will be one because the mapping will be bijective.

So, there will be one case we always fall into that case whereas, for all other j s the

probability will be 0 and if this happens like this H O given L will be 0 and it will not

differ with k. So, therefore, it will not work.
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So, an easy way out therefore, is that make the leakage non bijective say for example, let

us make it hamming weight for example. You can also make it say the last two bits or the

last 3 bits. So, in this case if I make it you know like the last for example, the hamming

weight then this is a corresponding plot of the mi value with the key gusses and you can

see that in this case the correct key base is give the is the first key base and which is unit

correct ok. This is my correct key guess ok.



So, this is the starting key this is the next key. So, you can get you can see that you can

get peaks. Likewise also note that you can get ghost peaks like there are some keys right

which you for which you can get wrong possible peaks as well.
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So, here is a further example on a present S box. So, present s box is being denoted here.

So, in this case the correct key byte is at specific location the number of trace is 2000.

Again you see the now right  you can get a corresponding peak. So, in this  case the

leakage is modelled again by the hamming weight and we indeed get a corresponding

peak at the corresponding key guess value.

So, in one case I have kind of simulated the power with the with only hamming weight,

in one case I have a kind of plotted with the hamming weight except that one bit is

contributing more to the leakage ok. So, we are basically added and extra intensive for

that bit ok. This is just to see our see our simulation works.
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So, here is a real life example where we basically target an AES-128 implemented on a

Sakura-G platform and the power trace which is acquired by varying plaintext at random

the experiment focuses again. So, this is my correct key this is a 128 bit key and I again

focus only on the first key byte. So, we take 8000 power traces ok.
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We observe the corresponding observables O and then do a similar mutual information of

analysis attack. So, therefore, what we do is we calculate we are doing from the cipher

text now. So, therefore, we do S box inverse of x XOR k where x is a cipher text. Now



the leakage function is say the lower 4 bits of f k or it could be the upper 4 bits of f k as

well. So, therefore, the moment we choose 4 bits we have got 16 classes or 16 bins.

So, you have got 16 bins. So, for every bin we can calculate H of O given L k. So, note

that H of L k given L k means that I am guessing the key and depending upon that I am

calculating this is H O given L k ok. Note that there are 256 you know like guessed

possible values here and therefore, we distribute the x values in to the 16 bins along with

their observed power leakages O x.
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We estimate this H O given L and therefore here is a plot of the mutual information.

Again you can observe that for the correct key guess right here you will get a peak here

and here this is zoomed version.

So, you can see that the key is quite visible. So, again note that if you go back right and

see the correct key the correct key was 4 a and indeed right and the 4 a position, you get

a peak here ok. So, this shows very nicely that the mutual information attack works and

it is working correctly.
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So, therefore, the mutual information is quite fundamental to understanding leakage we

discussed on the use of MI for side channel analysis. It works well when the leakage is

not linear for example, you know like DoN or CPA which works probably like the better

when the leakage is linear.

But it can even work in the MI can your MI will work way better when the leakage is not

linear and we discussed several case studies to see how MIA works and is an effective

side channel analysis tool. So, here a couple of interesting papers which you can also

read one version which is published in CHES in 2008 followed by another paper in

CHES 2009, which tells us exactly or gives a more descriptions on where to use mutual

information and actually where were not to use mutual information analysis ok. So, with

this I would like to thanks to you and we shall again join in the next class.

Thank you.


