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 So,  welcome to this  lecture  on Hardware Security. So,  today we shall  be trying  to

understand  about  some  new  design  techniques  in  perspective  of  the  Advanced

Encryption in perspective with the advanced encryption standard algorithm. So, to start

with let me take go through the; like the topics that we shall be covering in today’s class.

(Refer Slide Time: 00:33)

So, we shall be talking about AES implementation, we shall be talking with respect to the

components of AES algorithm which is essentially the mix column operation and the sub

box or the substitution box or the s-box implementation of AES. We shall be talking

about you know like we shall be trying to apply the techniques of isomorphism that

which we which we learnt in the last class. And try to see that how we can apply it for

realizing a composite field AES.

So,  and finally, we shall  be concluding  with  some quick  look into  one  of  the  most

efficient AES implementations which is present in the modern the Intel machines in the

form of his delegated instruction for accelerating AES operations. So, to start with we all

know that cryptographic Implementations are important.
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And we have got  different  paradigms for  implementation  for  example,  we need fast

designs we need fast designs in the sense; we need like our designs to operate at higher

clocks. We want to extract parallelism that is one of the main reasons why we are looking

into hardware design. And we also want that our design should support larger bandwidth.

So, while this can be you know like one category of objectives you can also have another

or you can have other categories on the other hand end of the spectrum; where you need

smaller designs you need your designs to have low power to should consume you know

like low power. And also you know like take less area on silicon. So, therefore, right I

mean this is also very important in certain context for example, when you want to your

designs to operate on lightweight platforms. For example, maybe your mobile phones or

some resource constrained IOT node. So, therefore, right we would probably need these

kind of design paradigms or various kind of design paradigms and we need various kinds

of design techniques for that.

So, in one end one end we may require fast designs on the other end the requirement may

be of making designs which are which are which are which are in which are lightweight

and  which  essentially  consume  less  energy  and  take  place  area  for  example.  So,

therefore, depending upon the perspectives your design choices may be different and we

will try to see some of them some of these flavors when we take talk about the AES

algorithm in particular.



So, so therefore both but one thing is for sure that we cannot compromise security and as

we will be seeing this in more and more details in our class that you know like just

implementing  with  respect  to  you  know like  these  design  choices  may  compromise

security. So, therefore, at the end of the day we have to also ensure that our designs are

secure and this we talking more and more details in during our course.

(Refer Slide Time: 03:26)

So,  to  start  with  you know like  we would  like  to  discuss  about  some broad design

strategies that we hardware designers kind of you know like they adopt when we want

our designs for example,  you know like we may want to do our optimizations which

actually depend upon the mathematical formulations on which our ciphers are described.

So, we would like to do something which is called as algorithmic optimizations which

are based on mathematical formulations that take advantage of the hardware platform.

So, in order to you know like sort of to explain this part of the optimization or these ways

of optimization; I will be taking the example of isomorphism that we which we discussed

in the last classes. And we will try to see how we can adopt isomorphism to extract more

compact designs of the AES algorithm ok. Like we will be trying to see how we can

adopt it not only for components of the AES but in general over the I mean the overall

AES hardware. How we can make it less consume less energy I mean how we can make

it consume less resource ok. 



So, on the other end right. We also adopt architectural optimizations where we try to

exploit architectural techniques like pipelining and parallelisms. So, these are of course,

like techniques which we have learned in the context of computer architectures. And we

also try to adopt them to get an end to end high throughput design so.

(Refer Slide Time: 04:53)

So therefore, this is a. So, again you know like taken from the same source where I

which I sited in the in some of my previous old classes; where we essentially this is this

is just a summary of the various AES structures. So, therefore, if you remember like that

in AES right you can actually represent the AES algorithm by a 4 cross 4 block. And

each  of  these  elements  in  this  square  matrix  essentially  are  bytes.  That  means,  that

elements of GF 2 power of 8 that is Galois field 2 power of 8.

And then what you do is that you basically pass them through the several rounds for

example, in AES 128 you pass them through the you know like 10 rounds. And each of

the rounds are as follows like if you just recapitulate and remember I just remember what

we already have discussed. So, initially you do an x oring with a key which is essentially

the input key. And then you pass them through a step of through a certain sequence of

steps which are called the rounds of the AES algorithm.

The first step is an s-box, so in the s-box you basically do a lookup; that means, every

byte is essentially substituted by another byte and that is essentially denoted by this box

where you are basically having say you know like 16 s-boxes to get the substitution



done. And final and after that you do a shift rows in the shift row the first row you do not

do any shift, the second row you do a cyclic left shift by one position.

The third row you do it cyclic left shift to the left by 2 positions or 2 byte positions. And

in the final row you do a cyclic left shift by 3 byte positions. And once you have done

that after that we have this mix column steps which recently it takes each column and

performs a pre matrix multiplication with a fixed matrix as we have discussed in the

previous classes and then you get  another column. So, we basically  do a column by

column transformation and finally, the objective is that a combination of shift row and

the mix column should essentially give me very fast diffusion in the cipher.

Then I do an x oring with the round key and finally, I get the output of the first round.

And then I pass this through you know I kind of iterate  this process through say 10

through 9 rounds in the case of AES 128 and then pass it through a final round. Now,

note in the final round you have an s-box or substitution box layer and you also have the

shift rows, but you do not have the mix columns. So, the mix columns is not present in

the final round.

Then you do an x oring with the final round key and you get the cipher. So, while you

know like AES 128 is just one parameter or one configuration of the AES algorithm you

may have other configurations. For example, you know like you may have AES 128 AES

192 or AES 256 depending upon which you change your number of rounds as well ok.

So, for example, in this case the number of rounds that you are doing is 9 plus 1, here

you will be doing 11 plus 1 and here you will be doing 13 plus 1. So, this is the number

of intermediate rounds which you have in your cipher.

So, finally, you get the cipher text and that essentially is what the you know like what an

attacker should ideally see. That means, the attacker should be able to see the cipher text

and maybe the plaintext, but from there we would try to know what is the key. So, that is

the objective of what is called as cryptanalysis. So, how the s-box is defined or how the

operations take place often in AES right we do the mathematics in GF 2 to the power of

8 as we have discussed. So, therefore, in GF 2 to the power of 8 or any extension field.

We know that we need an irreducible polynomial.

So, the irreducible polynomial which is used for AES is as follows x to the power of 8

plus x to the power of 4 plus x to the power of 3 plus x plus 1. And then you do your



operations by doing module operations with this as we have discussed that in AES since

it  is  based on composite  fields  there are  many opportunities  for  developing efficient

implementations.  In  particular  just  to  remember  the  s-box  what  we  do  in  an  s-box

computation is that it is a byte by byte substitution or it is a substitution operation. So,

therefore, you take the byte which is denoted here as a and then you pass it through a

series of transformations.

So, basically there are two transformations the first is the finite field inverse. So, you

calculate a finite field inverse by performing a to the power of minus one modulo m x

where m x stands for this irreducible polynomial. Finally, you give you get this result

which is denoted as g a and then I do an affine transformation on g a. So; that means, like

I take this matrix I mean I take this output of the of g a which is denoted as from as a

vector from a 7 to a 1 or a polynomial you can also think of that to be a polynomial

which would I actually should range from a 7 to a 0 actually because this is an eight bit

element.

So, it is a 0 to a 7 which is eight bits and therefore, there is an element in GF 2 to the

power of 8 we then do an affine transformation which means we basically multiply it by

a fixed matrix and then you add an vector. And finally, get the result of my of the s box.

So, therefore, right and so this is this is like the broad constitution of the AES operation

and but, there is also another very important layer which we have not really discussed in

details which is the key expansion. I will again not go into all the details on the key

expansion, but rather just mention that in the key expansion you take an input key which

is again 128 bit and from there you try to develop the remaining round keys.

So, for example, you develop 10 round keys in when you are talking about AES 128

likewise for AES 192 and AES 256 you would require to generate 128 bit keys or I mean

every round will typically have still have 128 bit keys, but in AES 192 or AES 256 your

input  key  is  of  dimension  192  bits  or  256  bits  respectively.  So,  likewise  the  key

scheduling is also you know takes account of these parameters.
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So, so now, the question is right we would like to develop a hardware design for AES.

So, what are the motivations of our hardware design. So, for example, right one of the

objectives could be that I would like my design to take less area. So, it would be you

know like consume less you got it should be able we should be able to implement it with

less than amount of gates. And therefore, what this is what is this particular you know

like I mean how do we measure that whether our design is really consuming less area.

We often measured it by the by what is called as gate equivalent where we try to find out

the number of two input NAND gates through which we can realize our design. So, that

is often called as the gate equivalent or abbreviated as ge likewise we would also like to

measure the throughput of our design. And therefore, we would like to make our design

has having high throughput. So, I would like to increase my throughput of my design and

for AES right one of the objectives could be that I want a unified AES engine. That

means one single hardware which will work both as an encryption as well as well as a

decryption.

Now you should note here that the AES algorithm right is not symmetric in terms of the

encryption  and  decryption.  That  means,  the  encryption  process  and  the  decryption

process are distinct. So, how do you really make a single hardware which essentially

functions  both  as  encrypter  or  as  decrypter  is  a  challenging  proposition  likewise  of

course. We should be able to handle different key sizes and this essentially is also an



important  could be an important  design criteria  where a single  device should be we

should be able to support 128 bit keys 192 bits or 256 bit keys. So, therefore, right I

mean this could be there could be various such challenges for AES design.

(Refer Slide Time: 12:24)

So, now, I will try to look into you know like some of them you know like during our

discussions.  So,  I  will  start  with  the  mix  columns.  So,  if  you remember  in  the mix

columns you essentially do a pre matrix multiplication; that means, you take basically an

element in GF 2 to the power of 8 and you pass it through a matrix; so this is how you do

a mix column. So, therefore, here is a vector which is essentially nothing, but a column

of the of my state matrix this  is this element  has got 32 bits which means that each

element is a 2 to the power of 8 or GF 2 to the power of 8 element.

So, what we do is that for the mix column we pre multiply it with this matrix. So, which

is showed here as 2 1 1 1 3, 3 2 1 1, 1 3 2 1, 1 1 3 2. So, this matrix essentially the 4 by 4

matrix and each element is also an element into 2 to GF 2 to the power of 8. So, when

you are doing this multiplication of this matrix with this vector; remember that when you

are multiplying set 2 with a 3 ok. So, when I am multiplying 2 with a 3 or 1 way or 3

with a 0 these multiplications are not integer multiplications they are multiplications in

GF 2 to the power of 8. So, therefore, right I would represent these two as a polynomial.

So, this polynomial in GF 2 to the power of 8 would be x.



 So, therefore, when I multiply x with say a 3 a 2 a 1 and a 0 then remember that I mean

when I am multiplying these two with a 3 then 2 is represented as x and likewise a 3 will

also have an 8 bit representation or a polynomial representation. So, when I multiply this

with this and whenever there is an overflow. That means, the degree of the polynomial

exceeds 8 or exceed 7 rather, then I have to do a modulo operation. So, therefore, this

modulo is again done by this mx polynomial which is the irreducible polynomial which I

use in context to AES ah algorithm. So, so let us try to you know like look into the mix

columns with this background.

So, as I said that when you are calculating the mix columns then your input here is

denoted as a, b, c, d. So, these are the four bytes of my column. So, I have got one

column and I am processing it through this mix column. And as I said that it is a 32 bit

element the column is a 32 bit element where each element is a byte. So, therefore, a is a

byte, b is a byte, c is a byte and d is a byte. So, when I do this multiplication then of

course, like the first element is 2 into a plus 3 into b plus c plus d. And that essentially is

my output element which is capital A. Likewise you have got capital B capital C and

capital D, but they are multiplied with different elements.

Because each row as we can see right in mix columns is a cyclic shift of the previous

row. So, therefore, is the same elements, but it is the arrangement is slightly different so

finally,  you  get  A,  B,  C  and  D.  And  again  just  what  I  said  you  know like  just  to

recapitulate this point that when you are multiplying with 2 remember that 2 into a is not

an integer multiplication. But rather is a multiplication in finite field which means that I

will do typically what I do in normal arithmetic that is I will if I we want to multiply say

this  remember  that  a  you can also represent  as a polynomial  whose degree is  seven

because it is an element on GF 2 to the power as 8.

So, when you multiply with two which essentially stands for x then you are basically

doing a cyclic glyph shape ok. So, therefore, x into the polynomial a; that means, when I

am calculating a into x then I am doing a cyclic left shift of the polynomial a or the or

you can think of like the bit the bit representation of a. So, that is denoted here the you

know like that when you are wanting to calculate 2 into x you are basically doing a

cyclic left shift of x. So, that is denoted here, but remember that is fine when the MSB of

x is 0 ok.



But when the MSB of x is 1 then basically there is an overflow. And therefore, once there

is an overflow you need to do a modulo reduction with your irreducible polynomial. And

that is denoted here by this step where you are basically doing an you know like doing a

modulo reduction with your irreducible polynomial for AES. So, therefore, right I mean

that gives you the how to compute 2 x and you can you know how to calculate 2 x

remember that when you want to calculate 3 x or 3 b for example. And if you have got if

you have got 2 a and if you have got a.

Then you just need to add 2 a with a to get 3 a ok; that means, you do not need to do an

explicit multiplication with 3 a and that is why the mixed columns can be very efficiently

implemented  and that  is  shown here in  this  diagram.  What  you do here  is  that  you

denote. Suppose my input is a so I do it you know like multiplication with 2 as I have

just  now described.  So,  you calculate  2 into a  and likewise  you know like  you can

calculate 2 into b. But when you want for example, in this case if you want 2 a plus 3 b

plus c plus d. You can note that when I am doing the final XOR then I am of course,

passing in 2 a because 2 a is one of the components but I also need 3 b.

So, I need 2 XOR b 3 b, but how I am doing 3 b is interesting. So, I am doing 2 b, but I

am not calculating 3 b explicitly. So, I am just calculating in 2 b and then I am x oring b

with it. So, therefore, to be x or with b would stand for 3 b. And therefore, I get 3 b here

without doing an explicit multiplication with 3. So, therefore, I have got 3 b and 4 c and

d I just need to pass them and therefore, c and d are XOR and passed finally, this XOR

output will give me 2 a plus 3 b plus c plus d or the where the plus essentially is nothing,

but exclusive OR.

So, likewise you can actually calculate the other elements in the column. For example,

you can calculate a plus 2 b plus 3 c plus d. So, that is here that is denoted here when you

are calculating these components. And likewise for the remaining elements in the you

know you can calculate capital A capital B capital C and capital D in this fashion. So,

note that when you are you can leave it at this point, but you if you remember like in

your round you also need to add the key ok.

So, therefore, that is denoted here by this layer. So, where key is again another byte. So,

you can imagine that there are four bytes in the which you are taking from the key matrix

which is the round key matrix and then you can actually x or them after the output of this



layer. So, therefore, after the mix column you can do a separate dedicatedly you know

different add round key, but there, but here you can do a slight trick when you are you

know like in particular going for FPGA implementations and that is illustrated here.

So, remember that I told you that the lookup tables that you have in FPGAs often I have

got fixed input structure.  That means,  they probably have got like four inputs or six

inputs or so on, which means that if you are you know like not utilizing them properly

then there are lot of wastages of the look up tables. So, what you can observe here is that

if you combine the key addition layer with the mix column. Then if you observe this

XOR for example, then this XOR has got 1 2 3 and 4 inputs.

That means, if you do not do the use this key and if you combine it later then you would

probably require two equivalent look up tables. But if you combine them and do it at one

shot then you require one single lookup table. So, therefore, you are basically doing the

same operation, but you are saving on the resource that you need to make your design

ok. And this is a small trick, but it can actually work nice because remember that this

process is being repeated for all the 4 columns. And therefore, right the total amount of

saving would be you know always magnified ok. And therefore, it is a useful trick that

you can try to adopt in your design.

(Refer Slide Time: 20:04)

So, the other important layer which is there in AES implementations is the s-box. So, as I

said that s-box is nothing, but a lookup table where you are basically substituting a byte



with another byte. So, one way of implementing them would be by using tables. So, you

can probably require a 256 byte table. And you can actually do your implementations by

just writing you know like just developing a memory based implementation.  But this

design would be slow due to what is called as the Von Neumann Bottle Neck.

So, if you remember I told this in the first class that you know like there is a big gap

between  the  processing  speed  that  your  CPU  enjoys  and  the  memory  access  time.

Because,  the memory access  time is  inherently  much slower compared to your CPU

processing your timing delay and other things. And that is why, I write what we have is

what  is  called  as  a  memory  wall.  And  therefore,  right  if  you  do  your  memory

computations  then  our  if  you do the  s-box in  memory  then  you are  always  kind  of

constrained by the memory access delay.

And therefore,  your design becomes slow. More importantly like you are using more

resource  because  you are  using the  memory  components.  And therefore,  right  while

using  s-boxes  or  using  table  base  s-boxes  is  probably  more  suited  for  software

implementations, for hardware implementations we will probably try to develop logical

equations.  But  at  the  same time  you  also  should  kind  of  think  that  if  you  want  to

implement the AES s-box just by purely logic equations. Then that also would consume

large amount of resource because simply because each of these s-box elements like if I

take all the 8 bits of the are the all the 8 output bits of s-box.

Then this each of these output bits actually depends upon all the input bits of the of the s-

box; which means the one of the reasons why it is done is because you want to make

your  design  nice  I  mean  you  want  to  make  your  s-box  strong  against  standard

cryptanalytic attacks. And therefore, there are many designer criteria’s which has led to

the design of AES s-box which is very nice which essentially requires the AES s-box

structure to be very complex.

And therefore, right if you would like to expand the output of the AES s-box in terms of

its  input then you would require a huge number of gates. You would require a large

number  of  components  to  do  these  design.  For  example,  if  you  want  to  write  the

equations maybe on a on a piece of paper then you would require a large amount of

space to do that. And that means that your design is pretty complex. So, therefore, right I

mean what people try to develop is try to develop tricks or techniques for doing so.
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So, for example, like if I go for a naive way or naive method of implementing an s-box. I

can actually try to adopt what is what we have already studied is that you know like I

mean we can also go for these approaches where you try to apply maybe the Euclidean

algorithm or the extended Euclidean algorithm for computing the AES output or the s-

box output. But then you know like you would require a large amount of clock cycles for

doing so ok.

So, therefore, I can of course, compute the inverse of x in GF 2 to the power of 8 using

the extended Euclidean algorithm. And then apply the affine transformation, but if I do

this in this process then several clock cycles will be required to get the output of a single

s-box ok. And imagine that you have to do this for maybe 16 s-boxes. Of course, you can

do them in parallel, but then you would require a large amount of resource. But there is a

very interesting trick which where we try to apply the principles of isomorphism and is

an example of algorithmic optimization ok.

As we have defined where we try to apply the techniques of isomorphism and use a

principle or what are called as composite fields. So, as we have discussed like composite

fields are fields of the form of GF 2 to the power of n whole power of m. So, if I try to

you know like apply composite fields and apply it you know like the principle that all the

composite fields are isomorphic.



If they are properly designed, then I can actually make very compact designs of the AES

s-box which will probably require less than 100 gates or maybe around 100 gates. And

we can essentially do the entire thing using a combinational circuit. That means, I can do

it without expanding clock cycles to get the output of the s-box ok. 

(Refer Slide Time: 24:11)

So, therefore, let me take an example or let us try the example or you know like motivate

why we need to go into this ok. Or try to understand the savings that we can essentially

get out of this technique. So, this must remember that we in AES we use the binary finite

field  which  is  GF  to  the  power  of  8  and  my  modulo  reduction  polynomial  or  the

irreducible polynomial is as x to the power of 8 plus x to the power of 4 plus x to the

power of 3 plus x plus 1.

So, now, we will use this principle that is GF 2 to the power of 8 can also alternatively

we represented by this composite field structure which is GF 2 to the power of 4 whole

power of 2 or even you can break down GF 2 to the power of 4 further. And then you can

also have fields like GF 2 square power of 2 power of 2 so even that is isomorphic ok.

So that means, now I can do my designs in a in a much smaller field. For example, if I

want to calculate an inverse or do an inverse in GF 2 to the power of 8 then,  I can

transform my element into GF 2 to the power of 4 square which is this. And then do my

inverse computation in GF 2 to the power of 4. So, what I can do is that I can you know



like one way of doing this implementation is that I can just have a table based inverse

computation.

For GF 2 to the power of 4 and that would be much more compact doing than doing an

inverse in GF 2 to the power of 8 ok. And therefore, right I can have an overall compact

design to get the output of GF 2 to the power of 8 inverse ok.  So, therefore,  I will

implement this GF 2 to the power of 4 in a table based manner. And then use logical

equations to derive the output in GF 2 to the power of 8 or GF to the power of 4 square. 

So, this transformation from GF 2 to the power of 8 to GF 2 to the power of 4 square and

vice versa for this I need a conversion matrix. And as we have discussed in the previous

class, there are different class of algorithms to which through which we can get these

transformations being computed so. So, therefore, right if you are able to do that then

what you will do is the as follows.

You will take x here and then you will map this x to an element in the composite field;

That means, remember that x was in GF 2 power of 8. So, now, you will map this 2 GF

to  power  of  8  into  GF  2  to  the  power  of  4  square  ok.  And  then  do  the  inverse

computation  in  GF  2  to  the  power  of  4  square;  that  means,  this  inversion  will  be

calculated in GF 2 to the power of 4 square. And then you will do a reverse map to bring

the result back to GF 2 to the power of 8. And then you can do an affine transformation.

So, remember that affine transformation has to be done.

Because you final in one that your algorithm should be producing the correct result as

per the specification of AES. So, then you can also do a very simple trick where this

reverse map remember can also like remember that the map and the reverse map like

based on the final algorithm. That I discussed in the last class can be represented by a

linear matrix which is a 0 1 linear matrix right.

So, therefore, what I can try to do is I can try to you know like combine the inverse map

matrix  with  the  affine  transformation  matrix  remember  that  these  are  two  matrix

operations. And therefore, I can combine them and I can get a one single matrix to do

this transformation ok. And that probably would make my design more compact then you

know like having two independent maps ok. Like the reverse map followed by the affine

map we can try to combine them into one single map and that can save some gates.
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So, how we transform this element from to this field GF 2 to the power of 8 to this field

GF two to the power of 2 power of 2, I will not go in details here because that is what we

essentially covered in details in the last class, but maybe you can go through this thesis

and it is a very nice you know like reference for these kind of discussions.

I just remind you that one way of doing that is we just map the 0 of this element to the 0

of the you know like the I mean the 0 of GF 2 to the power of 8 to the GF to the 0 of the

composite field. And then find alpha which is a primitive root of the field GF 2 to the

power of 8 you find beta which is a primitive root of the GF 2 power of 2 power of 2 and

then you develop this map. So, therefore, you just try to map alpha to beta you try to map

alpha square to beta square trying to map alpha cube to beta cube and so on.

So, therefore, you can essentially have a nice map between all these 256 elements which

are there in GF 2 to the power of 8. As well as in GF 2 to the power of 2 power of 2

because they are equinumerous both of them have got the same number of elements only

the way you are doing the computation is different. So, therefore, when you are doing

isomorphism what  you can do is  you can  actually  calculate  you know like  you can

perform a multiplication in the transform field.

And then you can apply the reverse transformation to get the result in the original field

that is what we have discussed in the previous class. But what may what we are trying to

take advantage of is that the you know the computations that means, the multiplications



and the inverse computations in the composite field should be more efficient than in the

original field which is GF 2 power of 8.

 (Refer Slide Time: 29:15)

So, let us see that what are the you know like benefits of doing this and here is a simple

you know like illustration of you know like how or what are the benefits of that. For

example,  I  am not  going so let  us  you know like  not  try  to  be  bothered  about  this

architecture right. Now, but just try to see the benefits for example, when you are for

example, measuring the gate counts for composite s-box implementations.

So, so here are two some figures which have been provided to us ok. So, when you are

calculating the s-box or composite s-box implementation then you can see the number of

number of gates which are required to do this design ok. For example, the number of

XORs is something like 80, the number of NAND gates is 34, number of NOR gates is

666 total number of gates in terms of NAND.

So, this is the you know what is called as the gate equivalent when you are representing

the  entire  gate  requirement  in  terms  of  2  input  NAND gates.  And for  standard  cell

libraries it turns out to be 180 which is like around 100 to 200 gates you can do it to do

this design. So, so likewise right you can actually also try to look into this that suppose I

want you know like to do these design rather than standard cells, but I would like to do

this design on FPGAs.



So, here you can see that for a composite field based AES s-box implementation the

number  of  slice  requirements  is  300  and  the  critical  path  of  my  design  is  18.3

nanosecond. and the gate count is something like 312 ok. So, if you compare this with a

pure lookup table based implementation you can see there the number of slices which is

required  is  significantly  reduced  it  was  previously  64  in  a  lookup  table  based

implementation.

But now it has been reduced to 30 which is almost like half. Now if we compare with the

of course, there is there is a penalty which you pay for that. And you know like when you

are doing your computations in logical circuits then of course, you can expect that the

critical path of your design will increase. And that is shown here by these figures where

you can see that the critical path increases from 11.9 nanoseconds to 18.3 nanoseconds

ok.

So, but at the same time right also keep in mind that you know like you also have you

know like when you are implementing in lookup table. Then and if you are for example,

going for a dedicated memory based implementation then there is a memory access time

which would also try to you know like I get accounted into this.

So, so therefore, right I mean of course, I mean you can say that you know like there is

an increase in the critical path delay. But you know like I believe that we should be able

to appreciate  the fact  that  there  is  a  significant  amount  of  reduction  in terms of  the

number of gates which are required to do this design ok. For example, the gate count

here has diminished from say 1128 to only 312 ok.

So, that is a phenomenal amount of decrease in terms of gate counts. And therefore, right

if that happens right then you can actually go for you know like parallel implementations

of the AES s-box to alleviate the throughput issues and you can essentially get a very

nice  tradeoff  between  you  know  like  throughput  as  well  as  area  when  you  go  for

composite  field  implementations  ok.  And  that  shows  you  know  like  the  minute  of

composite field implementations.

So, therefore, I will stop here and rather we will discuss in our next class on you know

like how this architecture comes. And how we can actually get use composite fields to

get an overall architecture for our for the s-box. So, we will start from there and again go

into the mix columns and then try to see the overall picture so.



Thank you for your attention.


