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Hello everybody welcome to the course of scaling or Scalable Data Science. Today’s

lecture is on introduction to Hashing, my name is Anirban Dasgupta, I am a Professor of

Computer Science and Engineering at IIT Gandhinagar, so let us begin.
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The outline of today’s lecture will involve looking at Hash tables and Hash functions.

While  this  might  be  something  that  you have  touched  upon in  your  under  graduate

algorithms class will go in to at little in the little more details. Will first see that what

makes a good hash table, what makes a good hash function right and in order to define

this well will introduce a concept of universal hashing. Then will look at some analysis

of hash function or a hash table in terms of the query time right and the concept of

chaining will come in here. We will then look at how to construct good hash tables and in

this lecture itself will look at one very simple example of simple construction for a good

hash function.
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So, here is a basic problem, suppose you have a library right that has a huge number of

books and you have organized at in whatever manner you can. Now somebody comes to

you and gives you one particular book and you have to ask the question of whether this

book is present in your library or not ok. So, what is a Naive algorithm for this the most

naive algorithm would be a linear search through your entire data sets ok.

We can always do that, but can we do better than this, can we pre process the data that

we have to build a data structure. So, that we are answering the query of that given any

particular element we are answering the query of whether it belongs to my data set in

time that is much faster than goings to the entire dataset and for this will construct a hash

table.
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The hash table  is  at  it  start  a  very  simple  data  structure,  we start  by  assuming that

elements come from a universe U right think of this as let us say the titles of all the

books or the eyes bin numbers of all the books. But while the, but while the universe U is

large at any point we need to store only n items small n items and small n is potentially

much less than the cardinality  of the entire set  U. Our hash table  data  structure will

consist of 2 parts, one this is simple array of size m right.

So, this the size that we choose m here the size m that we choose here will be bounded

by or accessed to memory, how much memory to be have how bit can be to make the

hash table. The next is the most important part of a hash function of a hash table, a hash

function and this is a function that maps every element of U into a number from 0 to m

minus 1. So, think of a hash function as telling at the following, given the element x in

which position of the array should you place the element x right. So, h of x will give you

the position of the array in which they place element x ok.

Again we will typically use m that is much smaller than the cardinality of the of the of

the universe, m will also be much smaller than the typically be much smaller than the

than the size of the elements that you need to get right and because of this because m is

less than n collisions about to happen right, by something if you have read about it called

the pigeonhole principle.



So, I mean so collisions we call it a collision when for 2 elements x and y of the universe

x does not equal y, but h is asking them to map into the same position of the array. That

is h is telling you that h of x is equal to h of y and so it should be put in both of this in the

same position of the array and we call this a collision.
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So, why do we look at collisions right, in theory whatever looking to do right, we are

looking to do what we are look in to do is keep all the elements x in the in the same

position h of x right. So, therefore if there is collision then in some sense the elements

are lamping up at the same position in at the same place of the hash table right. So, what

we want is to kind of distribute it distribute the elements of the universe as uniformly

across the hash, as uniformly across the area is possible right and it is clear that you

cannot  do  this  always.  Suppose  so  consider  this,  suppose  you  came  up  with  the

deterministic hash function and you showed this to your advisory right.

Now, by the pigeonhole principle this deterministic hash function H (Refer Time: 05:45)

of greater maps a lot of elements into the same position into one into one place of the

hash table right that is a position 0. So, in adversity could now give you a data could now

give you a dataset right that consists exactly of those elements of the universe right. That

is basically what it does it takes h inverse of 0 and gives you that positive dataset right.

So, then anything that you do has to boil down to just naive search over these elements

ok.



So in some sense we cannot really guarantee anything if you are choosing your hash

function in a deterministic manner and if you are advisory is powerful to sort of look at

this hash function and design the dataset and therefore what we deserve to is whereas

known as a randomized algorithm that is what we say is that ok. The hash function will

not be chosen deterministically, but it will be chosen randomly reasonably from a family

of functions ok. So, the most ideal way to choose a hash function seems to be choosing a

function at random that is out of all possible functions ok.

So, the so in that case the family H that we are talking about could potentially be the

family of all the functions that go from U to m right, that go from U to the set 0 to m

minus 1 and at one time what the algorithm is going to do is that it is its going to pick a

single hash function out of this set, out of this family H and what we will then do is

analyze the exceptive query time of the algorithm. So, this expectation that we take this

expectation that we take here is really over the choice of the hash function it is very

important to remember that, that the algorithms random choice right is the choice of the

hash  function  and  the  analysis  of  the  algorithm  happens  with  respect  to  the  this

randomness. So, it might seem natural to choose the hash function uniformly at random

out of all possible functions.

However,  there  is  a  catch  here  right  and  this  catch  is  as  follows  that,  because  the

algorithm has to also carry around the description of the hash function right. Because

remember when the query comes algorithm again has to calculate the value of the of the

h of the query right.  So,  therefore it  has to  carry around code that  is  essentially  the

description of the hash function with itself.  So,  therefore in  an information  theoretic

sense if the size of the family is H is cardinality of H right, the algorithm has to carry

logarithmic number of bits in the cardinality of H as the description of the hash function

right and if the set H is the is the is the is the set of all the hash functions m to that maps

U to the set m right.

Then  logarithm  then  log  of  the  cardinality  of  H  is  also  large  right,  the  log  of  the

cardinality of H is basically cardinality of U times log of m right, which is fairly large

and we do not want to do that. So, therefore what we will try to do is to try to create hash

families set of small in size right and will see will go into this precise in a little bit in a

little more.
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So, what we need to create our small hash families such that choosing a function from it

gives me a function with a good behavior. So, what is this definition of behavior? The

simplest notion of a function with good behavior is one that is a uniform right, that is you

could you could potentially say that the hash function that given any x the hash function

maps it in to a position i with probability 1 by m right there is the probability over all h

belonging to h. The event that h of x equals i equals one by m for all x and for all i, it

turns out that this is not enough right. This is not enough because we could it is not very

hard to construct hash function hash families that really are constant, that are mapping all

elements of the universe into only one position of the of the array and still satisfies this

requirement ok. So, this is not enough slightly better definition is that of universal hash

function.

What  is  universal?  The  definition  of  universal  hash  function  says  that  given  any  2

elements x and y there are not equal to each other. What is the chance that h maps both of

them into the same position of the array ok. If we take a minute and think about it if we

were choosing h to be uniformly and random among all  possible hash functions this

chance is exactly 1 by m ok.

So, therefore let  us just take that value right, what we are saying is that hash family

capital H is called universal, if what we choose a single hash function small h from this

family capital H the probability that h of x equals h of y equals 1 by m and this happens



for all pay as x and y. So, as of now it is not clear that there exists such universal family

right,  other  than the other  than the naive  other  than the  naïve family  of  all  possible

functions, but will soon see how to construct one such family ok.
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Sometimes what will happen is that we would not be able to construct a families that are

exactly universal and then what we go for our near universal families. So, near universal

hash family is one where this equality that this probability the probability of collision is

at most let us say 2 by m or some c by m and will call this a c mere universal hash

family.
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So, why are we looking at the definition of universality. So, we looking at the definition

of universality because of this particular construction. So, we have not really told you

what happens when 2 elements extend by collide right. For instance look at this look at

this picture that suppose this blue thing is the array that we are looking at, is the array of

size  m and we have  positions  2 5 and 9 and position  2 we have  3 elements  of  the

universe that have mapped in to position 2, similarly in position 9 there are 2 elements

are of mapped. So, what do we do it is very simple, what we do is that we basically keep

all the ids of the all the elements that are mapped into the same position using a link list

that has a root at that position right.

So, because there are 3 elements set of mapped in a position 2 we keep a link list of size

3 and the root of the link list is the position 2. Similarly we keep a link list of size 2

starting at the position 9, now what happens when I get, when I get an element when I

get  a  query I  map it  into the into  the  corresponding position  of  the array using the

function H, then I will then I see then I look at the link list starting from that position. If

there is no link list there then of course, I say know this particular query does not exist in

a hash table, but if there is a link list then you go over all the elements of the link list

trying to find that element.
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So, how do we get the expected time for a query? The expected time supposing suppose

in l of x, so let us suppose the query is the element x right so denote by l of x the length

of a change starting at position h x. Therefore, the expected time to query the element x

to say yes or no, whether this element x belongs to the hash table or not is given by this

expression. So, first you have to calculate the  hash table the value h of x for the element

x and that is going to take out the one time.

Let us say right and after that we have to go over the entire link list l of x trying to find

this element x right and therefore the time taken for that will be l of x it is linear in l of x

right  and  because  we  are  taking  expectation  with  respect  to  the  hash  function  h.

Therefore, the expected query time for the for the element x is order 1 plus expectation

over h l of x right and similarly for inserts and deletes ok. Because when you have to

insert an element we have to we have to again look for the element whether the element

exist and if it does not exist then you then you insert at element similarly for delete. So,

now this is the quantity that we need to analyze in order to bound the expected time for

query.
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So, the core part of that quantity that you saw is this particular expectation, expectation

over h l of x. So, how to be bound this? This seems like a daunting quantity, let us try to

create a bunch of very simple random variables first, for 2 elements x and y x not equal

to y define the following indicator variable C x y.

So, C xy equals 1 if h of x equal to h of y that is h is telling you to map x and y to the

same place and C of xy equal to 0 else. So, therefore now I can write down now I can

write h of x now I can write l of x in terms of in terms of the simple random variables C

xy. So, it is not hard to see that l of x is nothing but the summation over all y Cxy right,

which is by the linearity of expectation; now we can propagate their the expectation of h

inside the summation and because the C xy is a really burn 0 1 random variables.

The expectation of C xy is nothing but the probability that h of x equal to a equal to h of

y and now we see over the definition of universality comes in. Assuming that the hash

function h that I started with is exactly universal this probability is 1 by m for all pairs x

and y and because this is the sum over n values the expectation that we get is n by m

right.

So, this factor n by m right we intuitively call it the load factor of the hash table. So, in

some sense you have to hit this factor in your query time we cannot do a much better

than this.
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So, next let us talk about how to create a universal hash family ok. We have analyzed we

have defined universal hashing we have used it to analyze the query time and but we are

still not know that we can create a family of universal hash functions. So, here is a very

simple method to do that. So, suppose you start with a with the universe U look at the

cardinality of the universe U, then choose the prime number p that is larger than this the

then this cardinality.

Then define the following family right define look at all numbers a small a in the range

from 1 to p minus 1 and for each such number there will be a function h a. So, what is

this  function  ha  this  function  ha  is  nothing but  this  very  simple  operation  first  you

calculate given a number x. So, we are thinking of numbers as so we are thinking of

element ids as numbers in the range from 0 to cardinality of u without laws of generality

you can always do that right. So, the function h of a is defined as given any such input x

first you calculate the product a times x, then you take modulus of p what is that give me

that gives me the remainder of a times x when divided by p.

So, first you calculate ax mod p and then you calculate the mod m of that, basically the

remainder of that when divided by m. So, now what do we have we have a number in the

range from 0 to m minus 1 1 which is exactly what we desired and we use this number as

the value ha of x, which means that the place to store x in the array m. So, let us pretty

clear  that  choosing a hash function at  randomly is  basically  the same as choosing a



number a in the range from 1 to p minus 1 at random and this is what we will analyze.

But what happens, when you create a hash function by choosing the number a from 1 to

p minus 1 at random and calculating this value ha of x do we get a universal hash family.
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So, let us look at, let us look at the quantity h of x equal to h of y ok. So, what we want

to say that suppose h of x equals ha of y when can that happen, remember we get to

choose a, we do not get to choose x and y x and y are given to us. So, in how many ways

can we choose a such that h of a x equal to ha of y, so if that happens right then the a

times x minus y mod p right must have been divisible by m, because this left hand side

equals 0.

Now a times x minus y mod p is a number from 0 to p is a number from 0 to p minus 1.

So, how can that be divisible my mod m how many how many such numbers are there

that are divisible by mod m, it is not very hard to see these much bigger than m. So,

therefore there are exactly p minus 1 by m p minus 1 divided by m values in the range 1

to p minus 1 that are divisible by m.

So, how do I choose, a in how many ways do I choose a so that I get to hit exactly one of

these values and here is where we have to look at some properties of prime numbers, that

is we are trying to analyze that what is the probability of choosing a such that a times x

minus y mod p is 1 of these p minus 1 by m numbers.
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So, these are class of generality say that x is x is the bigger among x and y and therefore

x  minus  y ranges  between 1  to  p  minus  1.  In  fact  it  is  smaller,  but  to  that  loss  of

generality  we can  do that,  so  here  is  a  very  interesting  property  of  prime  numbers.

suppose you start you take any prime any prime p right and look at 2 numbers t and z

such that both t and z are in the range from 1 to p minus 1. In that case what we can say

is that there exists a unique number a in the range from 1 to p minus 1, such that a times

z mod p equals t ok. So, this reminds you of the property of division right in the case of

in the case let us say rational numbers right.

If I were take a if I have taken out this mod p right, if I was sort of doing a normal

division instead of instead of doing a modulus this property what have been obvious to

you, but it is not. So, obvious because we are doing this modulus operation; however, it

is easy to show by this is the case that supposing this property is false. That means, that

suppose there are 2 numbers a and b such that az equal to bz mod p.

In that case what happens; in that case what happens is that you get to say that a minus

bz mod p equal to 0 because and do convince yourself of this that this modulus operation

satisfies all this linear properties. But then a and b are both less than p, z is also less than

p and if the product of them is divisible by p, one of them must be divisible by p but how

can  that  happen  p  is  a  prime  number.  So,  therefore  the  product  of  them cannot  be

divisible by p the product of them cannot have mod p equal to 0 unless a equal to b.



So, therefore there exists a unique a, that satisfies a z mod p equal to t for all z and t in

the range from 1 to p minus 1 right. What does this mean now we were looking for the

solution for we were looking for the solution to a minus b times x, we were looking for

the solution to a times x minus y mod p to be 1 of p minus 1 by m numbers.

But what this statement means is that for each of these p minus 1 by m numbers there is

exactly a unique choice of a, that is going to map x minus y to that particular number. So

that means, and these are the only numbers that can cause collisions among x and y, so

that means at the probability of choosing such an a is really only p. So, there is only p

minus 1 by m such choices of a that cause that can cause a collision between 2 given x

and y and therefore the probability of choosing such an a is nothing but p minus 1 by m

divided by 1 by p minus 1 which is equal to 1 by m and that is exactly what we wanted

right because that that is really the definition of universal hashing.
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So, next we will, so while the definition of universal hashing of universal hashing of of

hash functions is very useful, we also made some times a little strong definitions in some

sets right and this and I will show you how to construct such hash families, but it is

actually  failed  easy  right.  So,  here  is  a  definition  of  what  is  known  as  the  k  wise

universal also sometimes called as strongly k wise universal hash function.

What does it say what it says is that instead of taking 2 in instead of taking x and y a pair,

now we take k tuple of k tuple of values from the universe x 1 to x k and we take a k



tuple of values from the hash positions 0 to 0 to m minus 1. So, while the k tuple here x 1

to x k are all distinct the k tuple y 1 to y k are not necessarily distinct, they can be few of

them I mean they can they can be the same y in yj can be the same and what we want to

say is that over the choice of the hash function right.

The probability that of this particular event and this is the event over which is the and

over k possible simple events the probability over h that h of x 1 equals y 1 h of x equals

y 2 and h of x equals y k equals 1 over m to the power k right. If this happens we call the

function h to be as strongly k wise universal hash function. So, how do we create such a

hash function? It is very simple actually, rather than just using ax mod p we now have to

use a polynomial of size k right.

We have to choose;  we have to  choose a  I  mean a 1 to  a  k  and therefore,  create  a

polynomial and it is not very hard to say that by the uniqueness of roots of a polynomial

you get the you get this property. And in order to store this particular hash function you

will only need to store the coefficients that this polynomial uses which is going to be of

size k log n, there are going to be k there are going to be k numbers each of them will

only need out the log n bits and therefore it is enough the store order k log n bits.
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So, just to summarize we looked at the very basic data structure that will use over and

over in this course and that is hash table and we saw that a hash table really there is no

magic. There is a there is a particular array m right where we store the elements and if



there is magic it is all there in what is known as a hash function and the design of the

hash function is the most critical part of creating a hash table.

So, this is a it is going to a simple it is a simple and versatile data structure and the main

issue is how to is, how to create this hash function and just Google just look up the

Wikipedia page for that there is an excellent literature about and it is a much researched

area of how to create hash functions that are fast, that are provable properties and so on.

But  we  also  saw  is  that  universality  of  hash  function  or  even  near  universality  is

something that guarantees small chain sizes and therefore guarantees faster query times.

We looked at we have looked at only a one particular method of handling collisions that

is known as chaining, that is whenever we had a collision we used a pointer we used a

we used a link list right. There are other ways of handling in chaining which are and the

most  conspicuous  one  is  one  is  open  addressing  and this  is  this  typically  results  in

smaller spaces smaller space usage, but it is much harder to analyze. Cuckoo hashing is a

techniques that is related to this and that is I mean that is a beautiful piece of work, but it

is a little to advanced for our class.

So, that is it for today thank you for joining us for this lecture, the primary reference for

this  lecture is this lecture notes by professor Jeff Erickson algorithms and models of

computation please look up this textbook. It is an online resource at this point, there are

other places where hashing and hash tables have been covered in quite a bit of details the

standard book of algorithms by Cormen Leiserson and Rivest is very nice chapter in it

and the book on randomized algorithms by Mitzenmacher  and Upfal also has a nice

chapter on hashing and hash tables. 

Thank you.


